Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548835PMC
http://dx.doi.org/10.1016/j.neuropharm.2022.109376DOI Listing

Publication Analysis

Top Keywords

endogenous opioid
16
opioid peptides
8
alcohol disorder
8
opioid peptide
8
endogenous
7
opioid
7
peptides
5
life times
4
times endogenous
4
peptides updated
4

Similar Publications

μ-Opioid receptor (MOR) agonists are a mainstay in acute pain management. However, they also produce adverse effects and are frequently misused, increasing susceptibility for opioid use disorder. Thus, a strategy for improving the safety of opioid analgesics is needed.

View Article and Find Full Text PDF

The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we examined whether regulatory T (T) cells, which suppress systemic and local inflammation, can modulate activation of peripheral neurons. Acute T cell "loss of function" increased neuronal activation to noxious stimuli independently of their immunosuppressive function.

View Article and Find Full Text PDF

Enkephalins are endogenous opioid peptides that modulate cardiovascular and renal function and are overexpressed in patients with acute heart failure (AHF). Although biologically active enkephalins lack a favorable biomarker profile, their stable surrogate proenkephalin 119-159 (PENK) appears to display prognostic value in AHF settings. The aim of the present study was to evaluate the role of point-of-care (POC) PENK in predicting mortality and worsening renal function (WRF) in patients presenting to the emergency department (ED) with AHF.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is a heterogeneous and complex limbic forebrain structure, which plays an important role in drug addiction and anxiety. Dynorphin and kappa-opioid receptors (DYN/KOR) comprise a crucial neural system involved in modulating stress-induced drug and alcohol addiction. Previous studies have highlighted the BNST as a brain region with a strong DYN/KOR expression.

View Article and Find Full Text PDF

The endogenous opioid system plays a pivotal role in numerous physiological processes and is implicated in a range of diseases, including atherosclerosis, a condition contributing to nearly 50% of deaths in Western societies. This study investigates the effects of opioid receptor blockade, using naloxone, on the plasma lipid profile and atherosclerosis progression. ApoE mice with advanced atherosclerosis were treated with naloxone for seven days, and the effects on atherosclerotic plaque development and liver steatosis were evaluated.

View Article and Find Full Text PDF