98%
921
2 minutes
20
Non-ignition impact and heat stimuli are the most common external stimuli loaded on energetic materials. Nevertheless, there is thereby an urgent need, but it is still a significant challenge to comprehend their coupling effects on the decay and safety mechanisms of energetic materials. Then, reactive molecular dynamics simulation was employed to mimic practical situations and reveal the impact heat coupling effect on the decay mechanism of FOX-7. The temperature and the degree of compression of the crystal caused by the impact are considered variables in the simulation. Both increasing the degree of compression and elevating the temperature promotes the decay of FOX-7. However, their underlying response mechanism is not the same. The acceleration of decomposition is due to the elevated potential energy of the FOX-7 molecules because of elevating the temperature. In addition to the elevated potential energy of the molecule, the main contribution to the decomposition from the compression is to change the decomposition path. The results of the analysis show that compression reduces the stability of the C=C bond, so that chemical reactions related to the double bond occur. In addition, interestingly, the compression along the direction has an almost equal effect on the final product as the compression along the direction. Finally, the decay reaction networks are proposed to provide insights into the decomposition mechanism on atomic level. All these findings are expected to pave a way to understand the underlying response mechanism for the FOX-7 against external stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737319 | PMC |
http://dx.doi.org/10.3390/molecules27238255 | DOI Listing |
Mar Life Sci Technol
August 2025
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 USA.
Unlabelled: Habitat fragmentation is a major cause of biodiversity loss. Fragmentation can alter thermal conditions on the remaining patches, especially at habitat edges, but few studies have examined variations in thermal tolerance of species in fragmented habitats. Ants are sensitive to both habitat fragmentation and temperature changes, and are an ideal taxon for studying these impacts.
View Article and Find Full Text PDFJ Thermoplast Compos Mater
August 2025
Institute for Applied Materials - Microstructure Modeling and Simulation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
In this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura's kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam.
Anthocyanins, natural antioxidants found in L. flowers, exhibit instability when exposed to high temperatures. Therefore, to heat-protect the anthocyanins, this investigation produced extract-loaded polymeric (polyethylenimine (PEI) or poly-(vinyl alcohol) (PVA)) functionalized silk fibroin nanoparticles using a green/sustainable process.
View Article and Find Full Text PDFRSC Adv
August 2025
University of Coimbra, CFisUC, Physics Department Rua Larga P-3004-516 Coimbra Portugal
Nanoscale materials are attracting a great deal of attention due to their exceptional properties, making them indispensable for many advanced applications. Among these materials, spinel ferrites stand out for their potential applications in electronic, optoelectronic, energy storage and other devices. This is why the development of a synthesis process combined with rigorous optimization of annealing conditions is provided to be an essential approach to control nanoparticle formation and fine-tuning their structural, morphological and functional characteristics.
View Article and Find Full Text PDFTurk J Biol
June 2025
Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea.
Aim: Neuronal cell death plays a critical role in the development of neurological disorders associated with aging. This study aimed to evaluate the beneficial effects of heat-ki lled lactic acid bacteria (hkLAB) on neuroblastoma cells and .
Materials And Methods: We pretreated heat-killed CNU384 (hkCNU384), .