98%
921
2 minutes
20
A rhabditid entomopathogenic nematode (EPN), , has a stable symbiotic relationship with the bacterial strain S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of and 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the transcriptome were specific between the two combinations. Six DEGs, including two transcription factors ( and ) and four kinases (, , , and ), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. and play key roles in the viability regulation of by positively mediating the expression of to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739912 | PMC |
http://dx.doi.org/10.3390/ijms232314692 | DOI Listing |
Environ Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2025
Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
This study involved the isolation of ten psychrophilic bacterial strains from cold water in Söğütlü village, Erzurum. Following isolation, the strains were characterized using molecular and conventional methods. On the basis of the results of Petri dish assays, Aeromonas salmonicida subsp.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Türkiye.
Objectives: This study focused on synthesizing and characterizing novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety and evaluating their antimicrobial activity against several bacterial strains. The research aimed to identify key structural features that enhance antimicrobial efficacy through structure-activity relationship analysis and identify the minimum inhibitory concentration (MIC) of the most potent compounds to assess their potential for further development as antimicrobial agents.
Materials And Methods: Nine novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety were synthesized by reacting 1,2,4-triazole derivatives with thiosemicarbazide precursors, and the products were characterized using infrared spectroscopy, proton nuclear magnetic resonance (H-NMR), carbon-13 nuclear magnetic resonance (C-NMR) spectroscopy, and elemental analysis.
FEBS J
September 2025
Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural
Galectins are a family of carbohydrate-binding proteins known to maintain intestinal microbiota homeostasis. Emerging evidence suggests that the bacterial symbiont plays a role in modulating insecticide resistance in insect. However, whether galectins influence insecticide susceptibility through microbiota regulation remains unclear.
View Article and Find Full Text PDF