MPTP induces neurodegeneration by modulating dopaminergic activity in catfish brain.

Neurotoxicol Teratol

Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India. Electronic address:

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tyrosine hydroxylase (Th) is an allosteric rate-limiting enzyme in catecholamine (CA) biosynthesis. The CAs, dopamine (DA), norepinephrine (NE), and epinephrine are important neurotransmitters wherein DA contributes a key role in the central nervous system of vertebrates. The present study evaluated DA and Th's significance in DA-ergic activity and neurodegeneration upon 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure in catfish. Further, the expression of certain brain-and ovary-related genes measured through qPCR were downregulated upon MPTP treatment which is in accordance with the decreased levels of L-Dopa, DA, and NE levels estimated through HPLC-ECD. Additionally, TEM analysis depicted structural disarray of brain upon MPTP exposure and also decreased serum levels of testosterone, 11-ketotestosterone, and estradiol-17β. MPTP treatment, in vitro, using primary brain cell culture resulted in diminished cell viability and increased ROS levels leading to elevated apoptotic cells significantly. Consequently, the study highlights the MPTP-induced neurodegeneration of the Th and DA-ergic activity in corroboration with female brain-related genes downregulation, also gonadal function as evidenced by depleted sex steroids level and low expression of ovary-related genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ntt.2022.107146DOI Listing

Publication Analysis

Top Keywords

da-ergic activity
8
mptp exposure
8
ovary-related genes
8
mptp treatment
8
mptp
5
mptp induces
4
induces neurodegeneration
4
neurodegeneration modulating
4
modulating dopaminergic
4
dopaminergic activity
4

Similar Publications

Parkinson's disease (PD) is the second most common neurodegenerative condition after Alzheimer's. Abnormal accumulation of alpha-synuclein (α-syn) aggregates disrupts the balance of dopaminergic (DA-ergic) synapse components, interfering with dopamine transmission and leading to synaptic dysfunction and neuronal loss in PD. However exact molecular mechanism underlying DA-ergic neuronal cell loss in the SNpc in not known.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial dysfunction and oxidative stress are significant factors in age-related neurodegenerative diseases, and PKCδ isoform in dopaminergic neurons is critical for cell death during these stress events through caspase-3 activation.
  • - The study revealed that upon mitochondrial dysfunction, PKCδ gets activated and moves to the nucleus, where it interacts with Lamin B1, causing nuclear damage and contributing to neuronal cell death.
  • - Experiments showed that blocking PKCδ activation or modifying Lamin B1 can prevent nuclear damage, confirming PKCδ's role as a major player in neurodegenerative processes linked to mitochondrial stress.
View Article and Find Full Text PDF

Vanillin Mitigates the MPTP-Induced α-Synucleinopathy in a Mouse Model of Parkinson's Disease: Insights into the Involvement of Wnt/β-Catenin Signaling.

J Integr Neurosci

September 2024

Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, Delhi, India.

Background: The abnormal aggregation of α-synuclein (α-syn) in the substantia nigra pars compacta (SNpc) region of the brain is characteristic of Parkinson's disease (PD), leading to the selective demise of neurons. Modifications in the post-translational processing of α-syn, phosphorylation at Ser in particular, are implicated in α-syn aggregation and are considered key hallmarks of PD. Furthermore, dysregulated Wnt/β-catenin signaling, influenced by glycogen synthase kinase-3 beta (GSK-3β), is implicated in PD pathogenesis.

View Article and Find Full Text PDF

Playing a key role in the organization of striatal motor output, the dopamine (DA)-ergic system regulates both innate and complex learned behaviors. Growing evidence clearly indicates the involvement of the DA-ergic system in different forms of repetitive (perseverative) behavior. Some of these behaviors accompany such disorders as obsessive-compulsive disorder (OCD), Tourette's syndrome, schizophrenia, and addiction.

View Article and Find Full Text PDF

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1KI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function.

View Article and Find Full Text PDF