Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To predict the recurrence of non-small cell lung cancer (NSCLC) within 2 years after curative-intent treatment using a machine-learning approach with PET/CT-based radiomics.

Patients And Methods: A total of 77 NSCLC patients who underwent pretreatment 18 F-fluorodeoxyglucose PET/CT were retrospectively analyzed. Five clinical features (age, sex, tumor stage, tumor histology, and smoking status) and 48 radiomic features extracted from primary tumors on PET were used for binary classifications. These were ranked, and a subset of useful features was selected based on Gini coefficient scores in terms of associations with relapsed status. Areas under the receiver operating characteristics curves (AUC) were yielded by six machine-learning algorithms (support vector machine, random forest, neural network, naive Bayes, logistic regression, and gradient boosting). Model performances were compared and validated via random sampling.

Results: A PET/CT-based radiomic model was developed and validated for predicting the recurrence of NSCLC during the first 2 years after curation. The most important features were SD and variance of standardized uptake value, followed by low-intensity short-zone emphasis and high-intensity zone emphasis. The naive Bayes model with the 15 best-ranked features displayed the best performance (AUC: 0.816). Prediction models using the five best PET-derived features outperformed those using five clinical variables.

Conclusion: The machine learning model using PET-derived radiomic features showed good performance for predicting the recurrence of NSCLC during the first 2 years after a curative intent therapy. PET/CT-based radiomic features may help clinicians improve the risk stratification of relapsed NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNM.0000000000001646DOI Listing

Publication Analysis

Top Keywords

radiomic features
16
features
9
f-fluorodeoxyglucose pet/ct
8
machine learning
8
recurrence non-small
8
non-small cell
8
cell lung
8
lung cancer
8
nsclc 2 years
8
naive bayes
8

Similar Publications

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Abdom Radiol (NY)

September 2025

Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.

Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.

View Article and Find Full Text PDF

Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.

Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.

View Article and Find Full Text PDF

Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.

Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF