98%
921
2 minutes
20
Consumption of maize contaminated with heavy metals such as cadmium, nickel, and zinc threaten human health. For situ measuring the bioavailability of heavy metals, the diffusive gradients in thin films (DGT) is superior to other traditional methods. It is also important to find a method for predicting heavy metal enrichment in maize based on the DGT method. In this study, field surveys were conducted in the main maize producing areas of Tianjin, China. Heavy metal concentrations in maize grains were predicted by coupling DGT with traditional extraction methods. The results show that coupling DGT with soil solution can significantly improve prediction accuracy (Cd-R = 0.908, Ni-R = 0.903, and Zn-R = 0.904). This indicated that DGT and soil solution were feasible predictors of heavy metal concentration in maize. The DGT induced fluxes in soil/sediment (DIFS) model was used to simulate the uptake process of heavy metals by DGT, and better reveal the desorption processes of heavy metals in soils. DIFS-based desorption processes were employed to characterize the resupply ability of heavy metals in soils. The coupling of DGT and DIFS parameters provided the best prediction accuracy in this study (Cd-R = 0.920, Ni-R = 0.928, and Zn-R = 0.908). Predictions are slightly weaker for Zn than for Cd and Ni (Cd-P < 0.01, Ni-P < 0.01, and Zn-P < 0.05). The reason is that the average resupply type of Cd and Ni in soil is partially sustained while Zn is resupplied via diffusion only. The desorption rate k can excellently improve the prediction accuracy of DGT, which avoids the disadvantage that soil solution does not consider desorption. The coupling of DGT and DIFS parameters provides an accurate and reliable method for predicting heavy metal enrichment in maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160523 | DOI Listing |
Mikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o
Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.
View Article and Find Full Text PDFEnviron Res
September 2025
State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.
View Article and Find Full Text PDF