98%
921
2 minutes
20
The FF-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F-ATPase and the FF-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764993 | PMC |
http://dx.doi.org/10.1128/aac.01056-22 | DOI Listing |
mBio
September 2025
School of Life Sciences, University of Warwick, Coventry, United Kingdom.
The FtsEX-EnvC-AmiA/B system is a key component of the cell division machinery that directs breakage of the peptidoglycan layer during separation of daughter cells. Structural and mechanistic studies have shown that ATP binding by FtsEX in the cytoplasm drives periplasmic conformational changes in EnvC, which lead to the binding and activation of peptidoglycan amidases such as AmiA and AmiB. The FtsEX-EnvC amidase system is highly regulated to prevent cell lysis with at least two separate layers of autoinhibition that must be relieved to initiate peptidoglycan hydrolysis during division.
View Article and Find Full Text PDFChem Sci
September 2025
State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China +86-571-8795-3189 +86-571-8795-3189.
[This corrects the article DOI: 10.1039/C6SC00531D.].
View Article and Find Full Text PDFbioRxiv
August 2025
Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544.
The construction of complex tissue shapes during embryonic development results from spatial patterns of gene expression and mechanical forces fueled by chemical energy from ATP hydrolysis. We find that chemical energy is similarly patterned during morphogenesis. Specifically, mitochondria are locally enriched at the apical sides of epithelial cells during apical constriction, which is widely used across the animal kingdom to fold epithelial tissues.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
Opposing activities of conserved chromatin regulatory complexes, such as the Polycomb Repressive Complex 1 (PRC1) and the activating chromatin remodeler SWI/SNF play critical roles in regulating gene expression during development and differentiation. The mechanisms by which these complexes compete to regulate chromatin states remain poorly understood. We combine single-molecule analysis and genomic approaches in cultured cells to demonstrate that the condensate-forming properties of PRC1 play an important role in excluding SWI/SNF from chromatin.
View Article and Find Full Text PDFCircular Rep-encoding single-stranded DNA (CRESS-DNA) virus Rep proteins are multidomain enzymes that mediate viral DNA rolling-circle replication. Reps nick viral DNA to expose a 3' end for polymerase extension, provide an NTP-dependent helicase activity for DNA unwinding, and join nicked ends to form circular viral genomes. Here, we present the first structures of a Rep protein from the family, a newly discovered family of human-associated CRESS-DNA viruses that replicates within the oral protozoan .
View Article and Find Full Text PDF