98%
921
2 minutes
20
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in and . The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the 3'UTR deletion mutants expressed SucA at higher levels than the and wild-type strains, respectively. In , the transcriptional regulator Nac also participates in the repression of . Lastly, this study clarifies that the release of GlnZ from the mRNA by RNase E is essential for the post-transcriptional regulation of . Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731577 | PMC |
http://dx.doi.org/10.7554/eLife.82411 | DOI Listing |
New Phytol
September 2025
College of Biology, Hunan University, Changsha, 410082, China.
In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China.
Objectives: To investigate the therapeutic effect of acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
Methods: Forty male SD rats were randomly assigned to control group, model group, group and group (=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test.
Biotechnol J
September 2025
Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Biberach, Germany.
The use of metabolic selection markers has advanced stable cell line generation, increasing productivity while simultaneously eliminating the need for antibiotic reagents. This study explores the potential of bacterially derived glutamine synthetases (GS) as a novel generation of metabolic selection markers to further enhance CHO cell culture performance. GS-I proteins were extracted from the genomes of enterobacterial and actinomycetes species.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China. Electronic address:
Ethnopharmacological Relevance: Shen Ling Bai Zhu San (SLBZS) is a classical Chinese herbal formula and has been used for treating chronic diarrhea (CD) for several centuries. However, there is a lack of robust evidence on how SLBZS regulates immune function to improve CD.
Aim Of The Study: To reveal the spleen-invigorating and antidiarrheal effects of SLBZS in chronic diarrhea mice induced by spleen-deficiency, as well as to explore the underlying mechanism.
Physiol Plant
September 2025
College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.
View Article and Find Full Text PDF