Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The restoration of degraded lands and minimizing the degradation of productive lands are at the forefront of many environmental land management schemes around the world. A key indicator of soil productivity is soil organic carbon (SOC), which influences the provision of most soil ecosystem services. A major challenge in direct measurement of changes in SOC stock is that it is difficult to detect within a short timeframe relevant to land managers. In this study, we sought to identify suitable early indicators of changes in SOC stock and their drivers. A meta-analytical approach was used to synthesize global data on the impacts of arable land conversion to other uses on total SOC stock, 12 different SOC fractions and three soil structural properties. The conversion of arable lands to forests and grasslands accounted for 91 % of the available land use change datasets used for the meta-analysis and were mostly from Asia and Europe. Land use change from arable lands led to 50 % (32-68 %) mean increase in both labile (microbial biomass C and particulate organic C - POC) and passive (microaggregate, 53-250 μm diameter; and small macroaggregate, 250-2000 μm diameter) SOC fractions as well as soil structural stability. There was also 37 % (24-50 %) mean increase in total SOC stock in the experimental fields where the various SOC fractions were measured. Only the POC and the organic carbon stored in small macroaggregates had strong correlation with total SOC: our findings reveal these two SOC fractions were predominantly controlled by biomass input to the soil rather than climatic factors and are thus suitable candidate indicators of short-term changes in total SOC stock. Further field studies are recommended to validate the predictive power of the equations we developed in this study and the use of the SOC metrics under different land use change scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160484DOI Listing

Publication Analysis

Top Keywords

soc stock
20
land change
16
total soc
16
soc fractions
16
organic carbon
12
soc
12
soil
8
indicators short-term
8
short-term changes
8
soil organic
8

Similar Publications

Introduction: Amivantamab plus lazertinib significantly improved progression-free and overall survival versus osimertinib in patients with previously untreated, EGFR-mutant advanced NSCLC. EGFR-targeted therapies are associated with dermatologic adverse events (AEs), which can affect quality of life (QoL). COCOON was conducted to assess prophylactic management and improve treatment experience.

View Article and Find Full Text PDF

The eastern Indo-Gangetic plains with huge natural resources have been projected as the seat of second green revolution in India which could only be possible by agricultural intensification and adoption of environment friendly and sustainable agricultural practices like organic farming (OF), natural farming (NF), and integrated crop management (ICM) practices. However, the effects of these management practices on soil carbon reserves and their lability, nitrogen fractions, crop yield and their potential to climate change mitigation are largely unexplored. Considering this, a field experiment was conducted (since 2020) to evaluate the impacts of NF OF, and ICM practices on depth-wise distribution of carbon and nitrogen fractions, carbon pools, carbon management index, carbon sequestration, and grain yield of rice in an acidic Alfisol under rice-maize system.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) remains a challenging haematological malignancy, with most patients developing resistance to standard-of-care (SOC) treatments. This resistance is often attributed to the overexpression of anti-apoptotic BCL-2 family proteins, which regulate the intrinsic apoptotic pathway by inhibiting pro-apoptotic effector proteins such as BAX and BAK. AML cells exploit this imbalance to evade apoptosis and sustain survival, necessitating the development of novel therapeutic strategies.

View Article and Find Full Text PDF

Effects of thinning on carbon stocks and fractions of plantation in eastern area of Liaoning Province, China.

Ying Yong Sheng Tai Xue Bao

July 2025

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Thinning is a crucial silvicultural practice in forest management, the rational intensity of which plays an important role in increasing carbon sequestration capacity of forest ecosystems. However, it is not clear how different thinning intensities affect forest ecosystem carbon stocks and their fractions. We investigated plantations in the mountainous regions of eastern Liaoning Province, analyzed changes in carbon stocks and fractions with different thinning intensities (0, 10%-30%, 30%-50% and 50%-70%), and explored key factors influencing stand productivity and soil organic carbon dynamics.

View Article and Find Full Text PDF