Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Feng-Sang River is a metropolitan river in Kaohsiung City, Taiwan. In this study, Feng-Sang River sediments were analyzed to investigate the distributions and sources of polycyclic aromatic hydrocarbons (PAHs). The Sediment Quality Guidelines (SQGs), potentially carcinogenic PAHs (TEQ), and toxic equivalence quotient (TEQ) were applied to evaluate influences of PAHs on ecosystems and microbial diversities. Results indicate that PAHs concentrations varied between seasons and locations. The concentrations of ∑PAHs ranged from 73.6 to 603.8 ng/kg in dry seasons and from 2.3 to 199.3 ng/kg in wet seasons. This could be because of the flushing effect during wet seasons, which caused the movement and dilution of the PAH-contaminated sediments. Diagnostic ratio analysis infers that high PAHs levels were generated by combustion processes and vehicle traffic, and results from multivariate descriptive statistical analysis also demonstrate that the vehicular traffic pollution could be the major emission source of PAHs contamination. Comparisons of PAHs with SQGs indicate that PAHs concentrations in sediment were below the effects range low (ERL) values, and thus, the immediate threat to organisms might not be significant. The diagnostic ratio analyses are effective methods for PAH source appointment. The metagenomic assay results imply that sediments contained essential microbial species with eminent diversity. The detected PAH-degrading bacteria (Desulfatiglans, Dechloromonas, Sphingomonas, Methylobacterium, Rhodobacter, Clostridium, and Exiguobacterium) played a key role in PAHs biotransformation, and Dechloromonas and Rhodobacter had a higher relative abundance. Results of microbial diversity analyses indicate that the contaminated environment induced the changes of governing microbial groups in sediments. PRACTITIONER POINTS: Diagnostic ratio analyses are effective methods for PAHs source appointment. Microbial composition in sediments are highly affected by anthropogenic pollution. Combustion and vehicle traffic contribute to urban river sediments pollution by PAHs. Dechloromonas and Rhodobacter are dominant PAHs-degrading bacteria in sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.10810DOI Listing

Publication Analysis

Top Keywords

diagnostic ratio
12
pahs
11
microbial diversity
8
sediments
8
urban river
8
feng-sang river
8
river sediments
8
indicate pahs
8
pahs concentrations
8
wet seasons
8

Similar Publications

Purpose: Expanding high-risk human papillomavirus (HPV) vaccine coverage in resource-constrained settings is critical to bridging the cervical cancer gap and achieving the global action plan for elimination. Mobile health (mHealth) technology via short message services (SMS) has the potential to improve HPV vaccination uptake. The mHealth-HPVac study evaluated the effectiveness of mHealth interventions in increasing HPV vaccine uptake among mothers of unvaccinated girls aged 9-14 years in Lagos, Nigeria.

View Article and Find Full Text PDF

Background And Objectives: Myelitis is a relatively common clinical entity for neurologists, with diverse underlying causes. The aim of this study was to describe the incidence of myelitis, its causes, clinical presentation, and factors predicting functional outcomes and relapses.

Methods: Using the Swedish National Patient Registry, we identified all adult patients in Stockholm County between 2008 and 2018 using International Classification of Diseases, 10th Edition (ICD-10) codes likely to include myelitis.

View Article and Find Full Text PDF

The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.

View Article and Find Full Text PDF

Immune Response Subphenotyping to Predict Mortality in Sepsis: A Prospective Study in Resource-Limited Setting.

Crit Care Explor

September 2025

Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.

Importance: Sepsis remains a leading cause of death in infectious cases. The heterogeneity of immune responses is a major challenge in the management and prognostication of patients with sepsis. Identifying distinct immune response subphenotypes using parsimonious classifiers may improve outcome prediction, particularly in resource-limited settings.

View Article and Find Full Text PDF

Background: Appendiceal adenocarcinomas and low-grade appendiceal mucinous neoplasms (LAMNs) are rare tumours. Much of the existing knowledge is derived from registry-based studies, particularly the Surveillance, Epidemiology, and End Results database in the USA.

Methods: This retrospective cohort study used data from the Swedish Cancer Registry, Swedish Cause of Death Registry, and the National Patient Registry to analyse demographic characteristics and outcomes of patients diagnosed with appendiceal adenocarcinoma or LAMN between 2005 and 2019.

View Article and Find Full Text PDF