98%
921
2 minutes
20
In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyes—methylene blue and orange-II—from aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694219 | PMC |
http://dx.doi.org/10.3390/molecules27227775 | DOI Listing |
Mikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam 781039, India.
The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2025
Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, China.
Bacterial infections have become a major challenge to global public health security. In this study, based on the concept of green synthesis, three cerium dioxide (CeO)-calcium oxide (CaO) composites (CS-CeO@CaO, CT-CeO@CaO, and CTD-CeO@CaO) were developed using chemical hydrothermal (CS), chrysanthemum tea impregnation (CT), and residue impregnation (CTD). Eggshell-derived calcium oxide was used as the carrier, in combination with the functional components of chrysanthemum tea and its residue extract.
View Article and Find Full Text PDFBMC Chem
August 2025
Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, Monastir, 5019, Tunisia.
A biocomposite composed of chitosan and lignin was synthesized for the removal of dyes and metals from aqueous solutions. The structural and surface properties of the adsorbent were characterized using FT-IR spectroscopy, SEM micrograph, X-ray diffraction, nitrogen adsorption-desorption isotherms, BJH pore size distribution, and zeta potential evolution. This study also presented a physicochemical investigation of the adsorption mechanism of reactive orange 16 (RO16) dye and hexavalent chromium (Cr(VI)) ions on chitosan-lignin biocomposite, using both experimental adsorption data and theoretical modeling based on statistical physics theory to elucidate the underlying interactions.
View Article and Find Full Text PDFBiomolecules
August 2025
Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
The textile industry's reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by with a yield of 1.85 g/L.
View Article and Find Full Text PDF