98%
921
2 minutes
20
Cutting tool characterization plays a crucial role in understanding the behavior of machining operations. The selection of a suitable cutting material, the operating conditions for the work piece, is necessary to yield good cutting-tool life. Several pieces of research have been carried out in cutting-tool characteristics for turning operation. Only a few pieces of research have focused on correlating the vibrations and stress with wear characteristics. This research article deals with stress induced in silicon carbide tool inserts and coated tool inserts while machining SS304 steel. Since this material is much less resistant to corrosion and oxidation it is widely used in engineering applications such as cryogenics, the food industry and liquid contact surfaces. Moreover, these materials have much lower magnetic permeability so they are used as nonmagnetic engineering components which are very hard. This article focuses on the machining of SS304 by carbide tool inserts and then, the cutting forces were observed with a tool dynamometer. Using observed cutting forces, the induced stress in the lathe tool insert was determined by FEA investigation. This research also formulates an idea to predict the tool wear due to vibration. Apparently, the worn-out tool vibrates more than new tools. Using the results, the relation between stress, strain and feed rate, depth of cut and speed was found and mathematically modeled using MINI TAB. It was observed that carbide tool inserts with coating withstand better than uncoated tools while machining SS304. The results were anticipated and correlation between the machining parameters furnished the prediction of tool life and obtaining the best machining outcomes by using coated tool inserts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694931 | PMC |
http://dx.doi.org/10.3390/ma15227994 | DOI Listing |
Nucleic Acids Res
September 2025
Expression génétique microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris 75005, France.
Targeted gene editing can be achieved using CRISPR-Cas9-assisted recombineering. However, high-efficiency editing requires careful optimization for each locus to be modified, which can be tedious and time-consuming. In this work, we developed a simple, fast and cheap method: Engineered Assembly of SYnthetic operons for targeted editing (EASY-edit) in Escherichia coli.
View Article and Find Full Text PDFHum Reprod
September 2025
Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes-UMR_S1085, Rennes, France.
Study Question: What is the direct effect of mumps virus (MuV) replication within the human testis on the tissue innate immune responses and testicular cell functions?
Summary Answer: MuV induces an early pro-inflammatory response in the human testis ex vivo and infects both Leydig cells and Sertoli cells, which drastically alters testosterone and inhibin B production.
What Is Known Already: Despite widespread vaccination efforts, orchitis remains a significant complication of MuV infection, especially in young men, which potentially results in infertility in up to 87% of patients with bilateral orchitis. Our understanding of MuV pathogenesis in the human testis has been limited by the lack of relevant animal models, impairing the development of effective treatments.
Minerva Dent Oral Sci
September 2025
Division of Implant Prosthodontics, Department of Surgical Sciences, University of Genoa, Genoa, Italy.
Background: The purpose of the study is to evaluate the use of a magnetodynamic instrument (Magnetic Mallet, Metaergonomica, Turbigo, Milan, Italy) to perform a horizontal bone expansion in edentulous sites that need to be rehabilitated with a dental implant.
Methods: A sample of 15 patients, 11 men and 4 women, age between 39 and 78 years, was analyzed. A total of 18 conical-shaped implants with a diameter of 3.
J Hered
September 2025
Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
Nuclear mitochondrial DNA segments (NUMTs), which are mitochondrial DNA fragments integrated into the nuclear genome, serve as markers of evolutionary history. This study aims to enhance the detection and analysis of NUMTs by developing a script named NUMTsearcher. Utilizing the latest chromosome-level genome assemblies from various species, including human, rabbit, and six fish species, the study compares NUMTsearcher's performance against traditional methods such as LAST (Local Alignment Search Tool), BLAST (Basic Local Alignment Search Tool), BLAT (BLAST-Like Alignment Tool), and the pan-mitogenome approach, which integrates mitogenomes from diverse sources to identify fixed NUMTs in the nuclear genome.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. Electronic address:
Background: During intense exercise, anaerobic metabolism predominantly produces energy in the body, resulting in lactic acid (LA) accumulation, which contributes to muscle fatigue and soreness and may also impair neurological and cardiovascular functions. In endurance sports, the lactate threshold (LT) is a key indicator of an athlete's capacity to clear and utilize LA, directly influencing athletic performance and endurance. Therefore, LA detection is crucial for assessing the physical condition of both athletes and the general population, as well as for optimizing training programs.
View Article and Find Full Text PDF