Structure and Properties of Bioactive Glass-Modified Calcium Phosphate/Calcium Sulfate Biphasic Porous Self-Curing Bone Repair Materials and Preliminary Research on Their Osteogenic Effect.

Materials (Basel)

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing 100

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, calcium phosphate (CP)/calcium sulfate biphasic bone repair materials were modified with bioactive-glass (BG) to construct a self-curing bone repair material. Tetracalcium phosphate, calcium hydrogen phosphate dihydrate, and calcium sulfate hemihydrate (CSH) with different BG ratios and phosphate solution were reacted to prepare a porous self-curing bone repair material (CP/CSH/BG). The solidification time was about 12 min, and the material was morphologically stable in 24 h. The porosity was about 50%, with a pore size around 200 μm. The strength of CP/CSH/BG was approaching trabecular bone, and could be gradually degraded in Tris-HCl solution. MC3T3-E1 cells were cultured in the leaching solution of the materials. Cytotoxicity was detected using Cell Counting Kit 8 assays, and the expression of osteogenesis-related biomarkers was detected using quantitative real-time reverse transcription PCR (qRT-PCR). The results showed that all BG groups had increased ALP and ARS staining, implying that the BG groups could promote osteoblast mineralization in vitro. qRT-PCR showed significant upregulation of bone-related gene expression (Osx, Ocn, Runx2, and Col1) in the 20% BG group (p < 0.05). Therefore, the CP/CSH/BG self-curing bone repair materials can promote osteogenesis, and might be applied for bone regeneration, especially for polymorphic bone defect repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699338PMC
http://dx.doi.org/10.3390/ma15227898DOI Listing

Publication Analysis

Top Keywords

bone repair
20
self-curing bone
16
repair materials
12
sulfate biphasic
8
porous self-curing
8
bone
8
repair material
8
repair
6
structure properties
4
properties bioactive
4

Similar Publications

Engineering a cell-free bone regeneration platform using osteogenically primed MSC-EVs and nHAp-enriched IPN hydrogels.

Regen Med

September 2025

Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.

Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.

Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Purpose: To evaluate changes in implant stability quotient values of hydrophilic tissue-level implants over time, and to investigate the influence of local factors on variations in these values.

Methods: Fifty tapered, self-tapping, tissue-level implants with a hydrophilic surface were placed and monitored for 12 months. Implant stability quotient values were recorded at the time of insertion (T0) and monthly thereafter for 12 months.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.

View Article and Find Full Text PDF