Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endocr/bqac195DOI Listing

Publication Analysis

Top Keywords

energy balance
12
trh neurons
12
trh
8
zebra finch
8
nucleus pvn
8
pvn pro-trh
8
trh immunoreactivity
8
npy mrna
8
pvn trh
8
npy
7

Similar Publications

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

Biosensors for Detecting Small Rho GTPases: Monitoring Expression and Activation.

Bioessays

September 2025

MY Small G Protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

Advanced biosensing technologies, such as Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), have enabled real-time, high-resolution tracking of Rho GTPase activity, surpassing traditional methods like pull-down assays. However, current biosensors mainly detect the GTP-bound active state through effector interactions, without directly measuring Rho GTPase expression or identifying related biomarkers of abnormal activation. Small Rho GTPases are essential molecular switches that regulate key cellular processes such as cytoskeletal organization, cell movement, polarity, vesicle trafficking, and the cell cycle.

View Article and Find Full Text PDF

Thermal Cross-linked Electron Transport Polymers for Suppressing Efficiency Roll-off in Green Solution-Processed Inverted OLEDs.

ACS Appl Mater Interfaces

September 2025

Organic Electronic Materials Laboratory, Department of Information Display, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.

Solution-processed phosphorescent inverted organic light-emitting diodes (s-IOLEDs) have garnered significant attention due to their excellent stability and high performance. However, frequently used inorganic electron transport layers usually cause exciton dissociation at the emitting layer interface, leading to low device efficiency and severe efficiency roll-off. In this work, we designed a cross-linkable triazine-grafted electron transport copolymer (PPDPT--PBCB) with a high triplet energy (3.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Metabolic interplay of SCFA's in the gut and oral microbiome: a link to health and disease.

Front Oral Health

August 2025

Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.

Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.

View Article and Find Full Text PDF