Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nonsmooth nonlinear systems can model many practical processes with discontinuous property and are difficult to be stabilized by classical control methods like smooth nonlinear systems. This article considers the output-feedback adaptive neural network (NN) control problem for nonsmooth nonlinear systems with input deadzone and saturation. First, the nonsmooth input deadzone and saturation is converted to a smooth function of affine form with bounded estimation error by means of the mean-value theorem. Second, with the help of approximation theorem and Filippov's differential inclusion theory, the given nonsmooth system is converted to an equivalent smooth system model. Then, by introducing a proper logarithmic barrier Lyapunov function (BLF), an output-feedback adaptive NN strategy is set up by constructing an appropriate observer and adopting the adaptive backstepping technique. A new stability criterion is established to guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, comparative simulations through Chua's oscillator are offered to verify the effectiveness of the proposed control algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2022.3222351DOI Listing

Publication Analysis

Top Keywords

nonlinear systems
16
output-feedback adaptive
12
nonsmooth nonlinear
12
input deadzone
12
deadzone saturation
12
adaptive neural
8
neural network
8
network control
8
systems input
8
saturation nonsmooth
8

Similar Publications

Chaos theory, initially developed by Edward Lorenz, a mathematician and meteorologist at the Massachusetts Institute of Technology, has evolved from a theory of the natural and physical sciences to a theory that has broad, interdisciplinary applications. Fundamentally, chaos theory connects various scientific disciplines by explaining how seemingly random behaviors that happen in non-linear or "chaotic" systems, no matter how minor, can lead to major consequences. While forensic anthropology is often considered an a-theoretical subfield of anthropology, the discipline has witnessed a proliferation of theoretical publications in recent years.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF

Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.

Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).

View Article and Find Full Text PDF

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

The mesocorticolimbic system in stimulant use disorder.

Mol Psychiatry

September 2025

Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.

Stimulant Use Disorder (StUD) is a pervasive and extremely dangerous form of addiction for which there are currently no approved medications. Discovering treatments will require a deep understanding of the neural mechanisms underlying the behavioral effects of stimulant drugs. A major target is the mesocorticolimbic system.

View Article and Find Full Text PDF