98%
921
2 minutes
20
Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681113 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268149 | PLOS |
Clin Genet
September 2025
Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.
View Article and Find Full Text PDFCureus
August 2025
Ophthalmology, Burjeel Medical City, Abu Dhabi, ARE.
We present a case of a 23-year-old female with characteristic skin papules and angioid streaks characteristic of pseudoxanthoma elasticum (PXE), an autosomal recessive disorder of elastic fiber mineralization. Genomic sequencing revealed a heterozygous variant in the ABCC6 gene. Despite the absence of biallelic mutations, the clinical phenotype aligns with PXE.
View Article and Find Full Text PDFDevelopmental delay and seizures with or without movement abnormalities (OMIM 617836) caused by heterozygous pathogenic variants in the gene (DHDDS-CDG) is a rare genetic disease that belongs to the progressive encephalopathy spectrum. It results in developmental delay in affected children, accompanied by myoclonus, seizures, ataxia and tremor, which worsens over time. encodes a subunit of a DHDDS/NUS1 cis-prenyltransferase ( PTase), a branch point enzyme of the mevalonate pathway essential for N-linked glycosylation.
View Article and Find Full Text PDFPurpose: The RPE65-associated retinopathies include biallelic Leber congenital amaurosis 2 and severe early childhood-onset RP, and monoallelic RP with choroidal involvement. The population frequencies of these diseases have previously only been estimated from epidemiological studies, but are deduced here from the number of predicted pathogenic heterozygous or carrier variants in a normal cohort using bioinformatic analyses.
Methods: RPE65 variants were downloaded from gnomAD v4.