Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electronic health records (EHRs) have given rise to large and complex databases of medical information that have the potential to become powerful tools for clinical research. However, differences in coding systems and the detail and accuracy of the information within EHRs can vary across institutions. This makes it challenging to identify subpopulations of patients and limits the widespread use of multi-institutional databases. In this study, we leveraged machine learning to identify patterns in medication usage among hospitalized pediatric patients receiving renal replacement therapy and created a predictive model that successfully differentiated between intermittent (iHD) and continuous renal replacement therapy (CRRT) hemodialysis patients. We trained six machine learning algorithms (logistical regression, Naïve Bayes, -nearest neighbor, support vector machine, random forest, and gradient boosted trees) using patient records from a multi-center database ( = 533) and prescribed medication ingredients ( = 228) as features to discriminate between the two hemodialysis types. Predictive skill was assessed using a 5-fold cross-validation, and the algorithms showed a range of performance from 0.7 balanced accuracy (logistical regression) to 0.86 (random forest). The two best performing models were further tested using an independent single-center dataset and achieved 84-87% balanced accuracy. This model overcomes issues inherent within large databases and will allow us to utilize and combine historical records, significantly increasing population size and diversity within both iHD and CRRT populations for future clinical studies. Our work demonstrates the utility of using medications alone to accurately differentiate subpopulations of patients in large datasets, allowing codes to be transferred between different coding systems. This framework has the potential to be used to distinguish other subpopulations of patients where discriminatory ICD codes are not available, permitting more detailed insights and new lines of research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674326PMC
http://dx.doi.org/10.1016/j.imu.2022.101104DOI Listing

Publication Analysis

Top Keywords

machine learning
12
subpopulations patients
12
learning identify
8
identify subpopulations
8
hemodialysis patients
8
electronic health
8
coding systems
8
renal replacement
8
replacement therapy
8
logistical regression
8

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.

View Article and Find Full Text PDF