Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice.

Methods: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype.

Results: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; <0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; <0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei.

Conclusions: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839600PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.122.061130DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte s-phase
16
s-phase activity
12
cell cycle
12
increase cardiomyocyte
8
backcross mice
8
cardiomyocyte
7
mice
5
cardiac troponin
4
troponin i-interacting
4
i-interacting kinase
4

Similar Publications

Conjugation of an NSAID such as ibuprofen to the head group of oxanorbornane-based lipids and the use of their aggregates as carriers for doxorubicin (Dox) are discussed here. These conjugates were characterized by various spectroscopic techniques, including 2D-NMR, and insights into their assembly were gathered through PXRD, AFM, SEM, DLS, and qNano techniques. Free lipids as well as their formulations (lipid:cholesterol:Dox in a 3:1.

View Article and Find Full Text PDF

The neonatal mammalian heart retains a transient regenerative capacity that diminishes shortly after birth. Reactivation of cardiomyocyte cell cycle activity represents a promising strategy for cardiac repair. This study identifies the nuclear-enriched long non-coding RNA FIRRE (Firre) as a critical regulator of cardiac development and regeneration.

View Article and Find Full Text PDF

The 1-day-old neonatal rat heart contains two subpopulations of ventricular cardiomyocytes (NNVMs) that reenter the cell cycle in vitro and in vivo distinguished by the absence or de novo expression of the intermediate filament protein nestin. Furthermore, de novo nestin expression in NNVMs directly facilitated cell cycle reentry and elicited a morphological migratory phenotype. Previous studies have reported that ventricular cardiomyocytes failed to reenter the cell cycle following damage to the 7-day-old rodent heart.

View Article and Find Full Text PDF

Background: Ischemic reperfusion (IR) generates reactive oxygen species (ROS) that inevitably result in myocardial cell death and heart failure. The regenerative power of cardiac progenitor/stem pools (CSCs), especially the Sca1 population, in response to IR injury remains unclear.

Methods: Our work sought to investigate whether small extracellular vesicles (sEVs) isolated from bone marrow-mesenchymal stem cells (BMMSCs) could rescue CSCs, specifically Sca-1+/CSCs, from IR by increasing their proliferative capacity and limiting their apoptosis in vitro.

View Article and Find Full Text PDF

Humans can be exposed to LCCPs through air and diet, leading to their accumulation in the body. Given the significance of understanding potential health risks, a thorough investigation into the detrimental health impacts of LCCPs is paramount. In this study, we conducted a series of experiments to investigate the effects of LCCPs on cardiomyocytes, employing techniques such as flow cytometry, western-blot, indirect immunofluorescence, and confocal microscopy.

View Article and Find Full Text PDF