A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nestin- and Nestin-Ventricular Cardiomyocytes Reenter the Cell Cycle In Vitro but Are Reciprocally Regulated in the Partial Apex-Resected 7-Day Neonatal Rat Heart. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The 1-day-old neonatal rat heart contains two subpopulations of ventricular cardiomyocytes (NNVMs) that reenter the cell cycle in vitro and in vivo distinguished by the absence or de novo expression of the intermediate filament protein nestin. Furthermore, de novo nestin expression in NNVMs directly facilitated cell cycle reentry and elicited a morphological migratory phenotype. Previous studies have reported that ventricular cardiomyocytes failed to reenter the cell cycle following damage to the 7-day-old rodent heart. The present study tested the hypothesis that cell cycle reentry of one or both of the NNVM subpopulations of 7-day-old neonatal rat pups was compromised in vitro and/or in vivo following cardiac damage. Three-day treatment of 7-day-old NNVMs with the protein kinase C activator phorbol 12,13-dibutyrate and the serine/threonine p38α/β MAPK kinase inhibitor SB203580 facilitated cell cycle reentry into the S phase and G-M phase of the cell cycle. Two distinct subpopulations of 7-day NNVMs reentered the cell cycle, and the predominant subpopulation was distinguished by de novo nestin expression. Three days following the sham-operation of 7-day-old neonatal rat hearts, cell cycle reentry was detected exclusively in NNVMs lacking nestin expression. Partial apex resection of 7-day-old neonatal rat hearts led to the de novo appearance of nestin-NNVMs preferentially bordering the damaged region and a subpopulation reentered the S-phase and G-M phase of the cell cycle in the absence of p38α/β MAPK inhibition. By contrast, cell cycle reentry of nestin-NNVMs identified adjacent to the apex-resected region was significantly reduced. These data highlight the disparate in vivo regulation of the two subpopulations of NNVMs following damaged to the 7-day-old neonatal rat heart and reaffirm the premise that targeting the subpopulation of nestin-ventricular cardiomyocytes identified in the ischemically damaged adult mammalian heart represents a plausible first step to initiate cell cycle reentry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022726PMC
http://dx.doi.org/10.1002/jcp.70040DOI Listing

Publication Analysis

Top Keywords

cell cycle
48
neonatal rat
24
cycle reentry
24
7-day-old neonatal
16
cell
12
reenter cell
12
cycle
12
rat heart
12
nestin expression
12
nestin-ventricular cardiomyocytes
8

Similar Publications