Bioengineering strategies for 3D bioprinting of tubular construct using tissue-specific decellularized extracellular matrix.

Int J Biol Macromol

Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India. Electronic address:

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The goal of the current study is to develop an extracellular matrix bioink that could mimic the biochemical components present in natural blood vessels. Here, we have used an innovative approach to recycle the discarded varicose vein for isolation of endothelial cells and decellularization of the same sample to formulate the decellularized extracellular matrix (dECM) bioink. The shift towards dECM bioink observed as varicose vein dECM provides the tissue-specific biochemical factors that will enhance the regeneration capability. Interestingly, the encapsulated umbilical cord mesenchymal stem cells expressed the markers of vascular smooth muscle cells because of the cues present in the vein dECM. Further, in vitro immunological investigation of dECM revealed a predominant M2 polarization which could further aid in tissue remodeling. A novel approach was used to fabricate vascular construct using 3D bioprinting without secondary support. The outcomes suggest that this could be a potential approach for patient- and tissue-specific blood vessel regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.064DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
12
decellularized extracellular
8
varicose vein
8
decm bioink
8
vein decm
8
decm
5
bioengineering strategies
4
strategies bioprinting
4
bioprinting tubular
4
tubular construct
4

Similar Publications

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

In coeliac disease (CeD), the epithelial lining (EL) of the small intestine is severely damaged by a complex auto-inflammatory response, leading intraepithelial lymphocytes to attack epithelial cells. To understand the intestinal changes and genetic regulation in CeD, we investigated the heterogeneity in the transcriptomic profile of the duodenal EL using RNA-seq and eQTL analysis on predicted cell types. The study included duodenal biopsies from 82 patients, grouped into controls, gluten-free diet treated CeD and untreated CeD.

View Article and Find Full Text PDF

Cannabis consumption and legalization is increasing globally, raising concerns about its impact on fertility. In humans, we previously demonstrated that tetrahydrocannabinol (THC) and its metabolites reach the ovarian follicle. An extensive body of literature describes THC's impact on sperm, however no such studies have determined its effects on the oocyte.

View Article and Find Full Text PDF

Modulation of fibronectin extracellular matrix enhances anti-tumor efficacy of immune checkpoint blockade.

Cell Rep Med

September 2025

Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. Electronic address:

The success of immune checkpoint inhibitors is limited by multiple factors, including poor T cell infiltration and function within tumors, partly due to a dense extracellular matrix (ECM). Here, we investigate modulating the ECM by targeting integrin α5β1, a major fibronectin-binding and organizing integrin, to improve immunotherapy outcomes. Use of a function-blocking murinized α5β1 antibody reduces fibronectin fibril formation, enhances CD8 T cell transendothelial migration, increases vascular permeability, and decreases vessel-associated collagen.

View Article and Find Full Text PDF

Dapagliflozin improves diabetic retinopathy in mice by inhibiting LAMA1 and regulating the PI3K/AKT signaling pathway.

Biochem Biophys Res Commun

September 2025

Department of Ophthalmology, Hebei Medical University, NO. 361 Zhongshan East Road, Changan District, Shijiazhuang City, Hebei Province, China; Department of Ophthalmology, Hebei General Hospital, NO. 348 Heping West Road, Xinhua District, Shijiazhuang City, Hebei Province, China. Electronic address

Diabetic retinopathy (DR) is among the most prevalent complications linked to advanced diabetes. Capillary Basement membrane (CBM) thickening is an early clinical manifestation in DR, and Laminin α 1 (LAMA1) is one of the main extracellular matrix components involved in CBM formation. Dapagliflozin (DAPA) has demonstrated efficacy in ameliorating DR.

View Article and Find Full Text PDF