98%
921
2 minutes
20
Background: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants.
Material And Methods: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay.
Results: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk.
Conclusions: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2022.11.007 | DOI Listing |
Arch Osteoporos
September 2025
School of Clinical Medicine, University of Cambridge, Cambridge, UK.
Unlabelled: The National Osteoporosis Guideline Group (NOGG) has updated the revised UK guideline for the assessment and management of osteoporosis and the prevention of fragility fractures in postmenopausal women, and men age 50 years and older. This guideline is relevant for all healthcare professionals involved in osteoporosis management.
Introduction: The UK National Osteoporosis Guideline Group (NOGG) first produced a guideline on the prevention and treatment of osteoporosis in 2008, with updates in 2013, 2017 and 2021.
Osteoporos Int
September 2025
International Osteoporosis Foundation, Nyon, Switzerland.
Unlabelled: The study explored osteoporosis patients' views on the disease in six LATAM countries. All were diagnosed for over 3 years, 65% avoiding fragility fractures. Sixteen used osteoporosis drugs, trusting physicians most.
View Article and Find Full Text PDFBone Jt Open
September 2025
School of Medicine, University of Nottingham, Nottingham, UK.
Aims: The number of hip fractures is increasing, with significant mortality and morbidity, particularly among frail and comorbid patients. Enhanced recovery after surgery (ERAS) pathways have proven effective in elective orthopaedics, but this has not been investigated in people with hip fractures. This study aimed to identify current perioperative practice and develop a cohesive ERAS pathway tailored for hip fracture patients, to standardize and optimize care.
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
Department of Endocrinology, Post-Graduate Institute of Medical Education and Research (PGIMER), 001, Nehru Extension Block, Chandigarh, India.
Rare diseases, defined by the 2002 Rare Disease Act, affect fewer than 5 in 10,000 individuals. Rare metabolic bone diseases (MBDs), such as osteogenesis imperfecta, hypophosphatasia, osteopetrosis, and other unclassified disorders, can disrupt bone development and remodeling, posing diagnostic and management challenges. This study analyzed data from the rarembd.
View Article and Find Full Text PDFUnlabelled: Dual-energy x-ray absorptiometry (DXA)-derived areal bone mineral density (BMD) remains the clinical standard for assessing osteoporosis risk, yet it fails to identify over 75% of individuals who sustain fragility fractures. Direct in vivo mechanical assessment of cortical bone strength may address this diagnostic gap by capturing structural and material properties that govern whole-bone strength but are not reflected by BMD. We conducted a multicenter case-control study with cross-sectional assessment to compare ulna flexural rigidity, a biomechanical property correlated with whole-bone strength (R² ≈ 0.
View Article and Find Full Text PDF