Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small object detection is one of the key challenges in the current computer vision field due to the low amount of information carried and the information loss caused by feature extraction. You Only Look Once v5 (YOLOv5) adopts the Path Aggregation Network to alleviate the problem of information loss, but it cannot restore the information that has been lost. To this end, an auxiliary information-enhanced YOLO is proposed to improve the sensitivity and detection performance of YOLOv5 to small objects. Firstly, a context enhancement module containing a receptive field size of 21×21 is proposed, which captures the global and local information of the image by fusing multi-scale receptive fields, and introduces an attention branch to enhance the expressive ability of key features and suppress background noise. To further enhance the feature expression ability of small objects, we introduce the high- and low-frequency information decomposed by wavelet transform into PANet to participate in multi-scale feature fusion, so as to solve the problem that the features of small objects gradually disappear after multiple downsampling and pooling operations. Experiments on the challenging dataset Tsinghua-Tencent 100 K show that the mean average precision of the proposed model is 9.5% higher than that of the original YOLOv5 while maintaining the real-time speed, which is better than the mainstream object detection models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658690PMC
http://dx.doi.org/10.3390/s22218221DOI Listing

Publication Analysis

Top Keywords

object detection
12
small objects
12
small object
8
small
5
aie-yolo auxiliary
4
auxiliary enhanced
4
enhanced yolo
4
yolo small
4
detection
4
detection small
4

Similar Publications

With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.

View Article and Find Full Text PDF

Camouflaged object detection (COD) aims to discover objects that are seamlessly embedded in the environment. Existing COD methods have made significant progress by typically representing features in a discrete way with arrays of pixels. However, limited by discrete representation, these methods need to align features of different scales during decoding, which causes some subtle discriminative clues to become blurred.

View Article and Find Full Text PDF

Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process.

View Article and Find Full Text PDF

Knowledge distillation (KD) aims to transfer knowledge from a large-scale teacher model to a lightweight one, significantly reducing computational and storage requirements. However, the inherent learning capacity gap between the teacher and student often hinders the sufficient transfer of knowledge, motivating numerous studies to address this challenge. Inspired by the progressive approximation principle in the Stone-Weierstrass theorem, we propose expandable residual approximation (ERA), a novel KD method that decomposes the approximation of residual knowledge into multiple steps, reducing the difficulty of mimicking the teacher's representation through a divide-and-conquer approach.

View Article and Find Full Text PDF

Thrips can damage over 200 species across 62 plant families, causing significant economic losses worldwide. Their tiny size, rapid reproduction, and wide host range make them prone to outbreaks, necessitating precise and efficient population monitoring methods. Existing intelligent counting methods lack effective solutions for tiny pests like thrips.

View Article and Find Full Text PDF