Visual categories and concepts in the avian brain.

Anim Cogn

Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Birds are excellent model organisms to study perceptual categorization and concept formation. The renewed focus on avian neuroscience has sparked an explosion of new data in the field. At the same time, our understanding of sensory and particularly visual structures in the avian brain has shifted fundamentally. These recent discoveries have revealed how categorization is mediated in the avian brain and has generated a theoretical framework that goes beyond the realm of birds. We review the contribution of avian categorization research-at the methodical, behavioral, and neurobiological levels. To this end, we first introduce avian categorization from a behavioral perspective and the common elements model of categorization. Second, we describe the functional and structural organization of the avian visual system, followed by an overview of recent anatomical discoveries and the new perspective on the avian 'visual cortex'. Third, we focus on the neurocomputational basis of perceptual categorization in the bird's visual system. Fourth, an overview of the avian prefrontal cortex and the prefrontal contribution to perceptual categorization is provided. The fifth section outlines how asymmetries of the visual system contribute to categorization. Finally, we present a mechanistic view of the neural principles of avian visual categorization and its putative extension to concept learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877096PMC
http://dx.doi.org/10.1007/s10071-022-01711-8DOI Listing

Publication Analysis

Top Keywords

avian brain
12
perceptual categorization
12
visual system
12
avian
10
categorization
9
avian categorization
8
avian visual
8
visual
6
visual categories
4
categories concepts
4

Similar Publications

Human-like malformations in anole lizards: Potential cases of "hopeful monsters" resembling chameleon morphology.

J Anat

September 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.

Vertebrates exhibit remarkable morphological diversity, with the head representing an exceptionally complex anatomical structure shaped by adaptations to feeding ecology, brain size, and sensory organ specialization. Proper fusion of facial prominences and the coordinated growth of the skull and brain are essential for normal craniofacial development in vertebrates, including humans. Disruptions in these processes, whether due to gene mutations or external factors, can result in craniofacial malformations.

View Article and Find Full Text PDF

Humans order numerosity along a left-to-right mental number line (MNL), traditionally considered culturally rooted. Yet, some species at birth show spatial-numerical associations (SNA), suggesting neural origins. Various accounts link SNA to brain lateralization but lack evidence.

View Article and Find Full Text PDF

Is 'number sense' a sense?

Elife

September 2025

Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan.

Experiments on domestic chicks shed light on the links between brain lateralization and the left-to-right mental number line.

View Article and Find Full Text PDF

Biochemical characterization of a flavodiiron protein from bird parasite Histomonas meleagridis: superoxide as a reaction intermediate.

J Biol Chem

September 2025

Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. Electronic address:

Histomonas meleagridis is a parasitic protozoan which causes histomoniasis (blackhead disease) in a wide range of birds, including domesticated chickens and turkeys, representing a significant health problem in avian veterinary medicine. Despite being classified as an anaerobic parasite, H. meleagridis can survive transient exposure to oxygen while little is known about the mechanisms that allow this organism to cope with exposure to varying oxygen levels.

View Article and Find Full Text PDF

Hummingbirds (family Trochilidae) are easily recognized due to their unique ability to hover. Critical to hovering flight is head and body stabilization. In birds, stabilization during flight is mediated, among other things, by the detection of optic flow, the motion that occurs across the entire retina during self-motion.

View Article and Find Full Text PDF