Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with σ = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision σ = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110459PMC
http://dx.doi.org/10.1038/s41587-022-01519-4DOI Listing

Publication Analysis

Top Keywords

minsted nanoscopy
8
detected photons
8
minsted
4
nanoscopy enters
4
enters Ångström
4
localization
4
Ångström localization
4
localization range
4
range super-resolution
4
super-resolution techniques
4

Similar Publications

Activation of caged fluorophores in microscopy has mostly relied on the absorption of a single ultraviolet (UV) photon of ≲400 nm wavelength or on the simultaneous absorption of two near-infrared (NIR) photons >700 nm. Here, we show that two green photons (515 nm) can substitute for a single photon (~260 nm) to activate popular silicon-rhodamine (Si-R) dyes. Activation in the green range eliminates the chromatic aberrations that plague activation by UV or NIR light.

View Article and Find Full Text PDF

Here we show that MINSTED localization, a method whereby the position of a fluorophore is identified with precisely controlled beams of a STED microscope, tracks fluorophores and hence labeled biomolecules with nanometer/millisecond spatiotemporal precision. By updating the position for each detected photon, MINSTED recognizes fluorophore steps of 16 nm within <250 μs using about 13 photons. The power of MINSTED tracking is demonstrated by resolving the stepping of the motor protein kinesin-1 walking on microtubules and switching protofilaments.

View Article and Find Full Text PDF

Optical nanoscopy, also known as super-resolution optical microscopy, has provided scientists with the means to surpass the diffraction limit of light microscopy and attain new insights into nanoscopic structures and processes that were previously inaccessible. In recent decades, numerous studies have endeavored to enhance super-resolution microscopy in terms of its spatial (lateral) resolution, axial resolution, and temporal resolution. In this review, we discuss recent efforts to push the resolution limit of stimulated emission depletion (STED) optical nanoscopy across multiple dimensions, including lateral resolution, axial resolution, temporal resolution, and labeling precision.

View Article and Find Full Text PDF
Article Synopsis
  • Diffractive optical elements (DOEs) are important in optics for shaping wavefronts but their use is limited by complex and costly fabrication processes.
  • A new cost-effective method for creating DOEs involves using two transparent materials with similar refractive indices, allowing for easy scaling and 3D printing at micro-resolution.
  • This approach not only simplifies production, making DOEs more accessible, but also successfully fabricates complex elements for advanced applications like super-resolution microscopy and vector beam generation.
View Article and Find Full Text PDF

Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power.

View Article and Find Full Text PDF