Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extreme heat caused by global climate change has become a serious threat to the sustainable development of urban areas. Scientific assessment of the impacts of extreme heat on urban areas and in-depth knowledge of the cross-scale mechanisms of heat vulnerability forming in urban systems are expected to support policymakers and stakeholders in developing effective policies to mitigate the economic, social, and health risks. Based on the perspective of the human-environment system, this study constructed a conceptual framework and index system of "exposure-susceptibility-adaptive capacity" for urban heat vulnerability (UHV) and proposed its assessment methods. Taking Xiamen City, a coastal metropolis, as an example, spatial analysis and Geodetector were used to explore the spatial and temporal changes, spatial characteristics, and patterns of UHV under multiple external disturbances from natural to anthropological factors, and to reveal the main factors influencing UHV forming and spatial differentiation. Results showed that the exposure, susceptibility, adaptive capacity, and UHV in Xiamen City had a spatial structure of "coastal-offshore-inland". On the hot day, both the exposure and UHV showed a temporal pattern of "rising and then falling, peaking at 14:00" and a spatial pattern of "monsoonal-like" movement between coast and inland. Coastal zoning with favorable socioeconomic conditions had less magnitude of changes in UHV, where the stability of the urban system was more likely to be maintained. During the hot months, the high UHV areas were mainly distributed in the inland, while coastal areas showed low UHV levels. Further, coastal UHV was mainly dominated by "heat exposure", offshore by "comprehensive factors", and inland in the northern mountainous areas by "lack of adaptive capacity". Multi-scale urban adaptive capacity was confirmed to alter spatial distribution of exposure and reshape the spatial pattern of UHV. This study promotes the application of multi-scale vulnerability framework to disaster impact assessment, enriches the scientific knowledge of the urban system vulnerability, and provides scientific references for local targeted cooling policy development and extreme heat resilience building programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632749PMC
http://dx.doi.org/10.3389/fpubh.2022.989963DOI Listing

Publication Analysis

Top Keywords

heat vulnerability
12
extreme heat
12
uhv
10
urban
8
urban heat
8
coastal metropolis
8
urban areas
8
xiamen city
8
spatial
8
adaptive capacity
8

Similar Publications

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

Unlabelled: Informal settlements, where over 1 billion people live globally, are extremely vulnerable to fire events. Thermally thin steel-clad timber-framed homes found in South African informal settlements are a prime example of this. In this paper, we explore, through six full-scale laboratory experiments and modelling, the influence of opening locations, areas, and aspect ratios, on the fire dynamics of thermally thin and leaky compartments.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

High Environmental Heat Exposure Is a Risk Factor for Acute Kidney Injury and Chronic Kidney Disease.

Semin Nephrol

September 2025

University of Alabama at Birmingham, Department of Medicine, Division of Nephrology, Section of Cardio-Renal Physiology and Medicine, Birmingham, AL. Electronic address:

Chronic kidney disease of unknown etiology has been reported in Mesoamerican regions and other parts of the world, with increasing evidence pointing to heat stress as a central contributing factor. The incidence of acute kidney injury appears to correlate strongly with heat exposure, as demonstrated in both human and animal studies. The underlying mechanisms of heat-induced kidney injury are likely multifactorial, involving hemodynamic changes, immune responses, and possibly coagulopathies.

View Article and Find Full Text PDF

Epidemiological studies in humans have suggested that tomato consumption and the compositional ratios of Prevotella, Megamonas, and Streptococcus in the intestinal microbiota are related to intestinal permeability. In this study, we investigated the causal relationship using Caenorhabditis (C.) elegans.

View Article and Find Full Text PDF