Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Preoperative diagnosis of gastric cancer and primary gastric lymphoma is challenging and has important clinical significance. Inspired by the inductive reasoning learning of the human brain, transfer learning can improve diagnosis performance of target task by utilizing the knowledge learned from the other domains (source domain). However, most studies focus on single-source transfer learning and may lead to model performance degradation when a large domain shift exists between the single-source domain and target domain. By simulating the multi-modal information learning and transfer mechanism of human brain, this study designed a multisource transfer learning feature extraction and classification framework, which can enhance the prediction performance of the target model by using multisource medical data (domain). First, this manuscript designs a feature extraction network that takes the maximum mean difference based on the Wasserstein distance as an adaptive measure of probability distribution and extracts the domain-specific invariant representations between source and target domain data. Then, aiming at the random generation of parameters bringing uncertainties to prediction accuracy and generalization ability of extreme learning machine network, the 1-norm regularization is used to implement sparse constraints of the output weight matrix and improve the robustness of the model. Finally, some experiments are carried out on the data of two medical centers. The experimental results show that the area under curves (AUCs) of the method are 0.958 and 0.929 in the two validation cohorts, respectively. The method in this manuscript can provide doctors with a better diagnostic reference, which has certain practical significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632652PMC
http://dx.doi.org/10.3389/fnhum.2022.1040536DOI Listing

Publication Analysis

Top Keywords

transfer learning
16
multisource transfer
8
probability distribution
8
human brain
8
performance target
8
target domain
8
feature extraction
8
learning
7
domain
6
transfer
5

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF