Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting.

Bioresour Technol

Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. Electronic ad

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polylactic acid (PLA) is commercialized as a compostable bio-thermoplastic. PLA degrades under industrial composting conditions where elevated temperatures are maintained for a long timeframe. However, these conditions cannot be achieved in a non-industrial compost pile. Therefore, this study aims to degrade high molecular weight PLA films by adding a PLA-degrading bacterial consortium (EAc) comprised of Nocardioides zeae EA12, Stenotrophomonas pavanii EA33, Gordonia desulfuricans EA63, and Chitinophaga jiangningensis EA02 during traditional composting. With EAc-bioaugmentation, PLA films (5-30% w/w) had complete disintegration (35 d), 77-82% molecular weight reduction (16 d), and higher CO liberation and mineralization than non-bioaugmented composting. Bacterial community analyses showed that EAc-bioaugmentation increased the relative abundance of Schlegelella, a known polymer degrader, and interacted positively with beneficial indigenous microbes like Bacillus, Schlegelella and Thermopolyspora. The bioaugmentation also decreased compost phytotoxicity. Hence, consortium EAc shows potential in PLA-waste treatment applications, such as backyard and small-scale composting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128237DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
bacterial consortium
8
degrade high
8
high molecular
8
polylactic acid
8
traditional composting
8
pla films
8
consortium eac
8
composting
5
bioaugmentation defined
4

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Objective: While associations of ultra-processed food (UPF) consumption with adverse health outcomes are accruing, its environmental and food biodiversity impacts remain underexplored. This study examines associations between UPF consumption and dietary greenhouse gas emissions (GHGe), land use, and food biodiversity.

Design: Prospective cohort study.

View Article and Find Full Text PDF

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

Harnessing the potential of spatial statistics for spatial omics data with pasta.

Nucleic Acids Res

September 2025

Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland.

Spatial omics allow for the molecular characterization of cells in their spatial context. Notably, the two main technological streams, imaging-based and high-throughput sequencing-based, give rise to very different data modalities. The characteristics of the two data types are well known in spatial statistics as point patterns and lattice data.

View Article and Find Full Text PDF