Comparative genomic analysis of SMN-LBK from koumiss.

Front Microbiol

School of Food Science and Technology, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, Xinjiang, China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SMN-LBK, which was isolated in Xinjiang, has been shown to be a probiotic strain and used as the auxiliary starter for dairy fermentation. Comparative genomic analysis was performed to investigate the metabolic preference and ethanol tolerance mechanisms of SMN-LBK. The results of comparative genomics showed that strains had high conservation and genetic diversity. SMN-LBK encoded various genes related to carbohydrate and amino acid metabolism pathways, which endow this strain with good fermentation potential. In addition, 6 CRISPR sequences and 8 cas proteins were found in SMN-LBK, and these could play vital roles in the immune system. Furthermore, a unique cluster of potential secondary metabolism genes related to bacteriocins was detected in the genome of SMN-LBK, and this could be important for the preservation of fermented foods. Multiple genes related to alcohol tolerance were also identified. In conclusion, our study explained the traits that were previously demonstrated for SMN-LBK as phenotypes and provided a theoretical basis for the application of SMN-LBK in the food industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622802PMC
http://dx.doi.org/10.3389/fmicb.2022.1042117DOI Listing

Publication Analysis

Top Keywords

comparative genomic
8
genomic analysis
8
smn-lbk
8
analysis smn-lbk
4
smn-lbk koumiss
4
koumiss smn-lbk
4
smn-lbk isolated
4
isolated xinjiang
4
xinjiang probiotic
4
probiotic strain
4

Similar Publications

Purpose: Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a rare cancer susceptibility syndrome exclusively attributable to pathogenic variants in FH (HGNC:3700). This paper quantitatively weights the phenotypic context (PP4/PS4) of such very rare variants in FH.

Methods: We collated clinical diagnostic testing data on germline FH variants from 387 individuals with HLRCC and 1,780 individuals with renal cancer, and compared the frequency of 'very rare' variants in each phenotypic cohort against 562,295 population controls.

View Article and Find Full Text PDF

Background: Tumefactive demyelination (TD) is a rare variant of multiple sclerosis (MS) characterized by tumor-like lesions that often require aggressive management. Genome-wide association studies (GWAS) identified variants associated with MS; similar analyses in TD are lacking.

Objective: A GWAS was performed to identify variants associated with TD.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF

Many North American game animals experienced severe population declines during the 19th century due to market hunting. However, estimates of the timing and magnitude of these declines often rely on anecdotal evidence, which makes it difficult to understand the lasting impacts of hunting pressures versus climate or landscape changes on the genetic diversity of contemporary populations. Historical reports suggest the California quail (Callipepla californica) suffered more significant hunting pressure in the late 19th century relative to either Gambel's (Callipepla gambelii) or mountain quail (Oreortyx pictus).

View Article and Find Full Text PDF