98%
921
2 minutes
20
Mid-infrared spectroscopy is one of the major analytical techniques employed for measurements of protein structure in solution. Traditional Fourier Transform-Infrared (FT-IR) measurement is limited by its blackbody light source that is inherently spatially incoherent and has low optical power output. This limitation is pronounced when working with proteins in aqueous solutions. Strong absorbance of water in protein amide I region 1600-1700 cm restricts light path length to <10 μm and imposes significant experimental challenges in sample and flow cell handling. Emerging laser spectroscopic techniques use high-power coherent laser as light source that overcomes the limitation in FT-IR measurement. In this study, we employed an innovative infrared spectrometer that uses quantum cascade laser (QCL) as light source. Continuous infrared radiation from this laser source can be swiftly swept within the amide I region (1600-1700 cm) and amide II region (1500-1600 cm), which makes this technique ideal for protein secondary structure study. Protein solutions as low as 0.5 mg/mL were measured rapidly without any sample preparation. Infrared spectra of model proteins were thus collected, and a chemometric model based on partial least squares regression was developed to quantify α-helix and β-strand motifs in protein secondary structure. The model was applied to measurement of the native secondary structure of commercial therapeutic proteins and bovine serum albumin (BSA) and in thermal degradation studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-022-03422-8 | DOI Listing |
ACS Omega
September 2025
Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Universidade Estadual de Goiás, Anápolis, GO 75001-970, Brazil.
In this work, we report a theoretical investigation of the third-order nonlinear optical properties of the metronidazolium-picrate salt. The effects of the crystal environment are accounted for by the Iterative Charge Embedding approach, and the electronic calculations are carried out at the DFT (CAM-B3LYP/6-311++G-(d,p)) level. Furthermore, we use the results to parametrize a cavity Quantum Electrodynamics model for a quantum memory based on the Off-Resonant Cascaded Absorption protocol.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
Microfluidic platforms have emerged as powerful tools for investigating complex interactions between cells and their microenvironment. Conventional cancer models often fail to accurately replicate the complexities of the tumor microenvironment. In contrast, cancer-metastasis-on-a-chip models integrate the benefits of three-dimensional cell cultures with microfluidic technology, providing more physiologically relevant platforms for studying cancer biology and improving precision of drug screening.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Research Center for Nano-Biomaterial, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
Regeneration of infected bone defects (IBDs) requires biomaterials capable of dynamically coordinating antimicrobial, anti-inflammatory, and osteogenic functions. Overcoming the spatiotemporal mismatches in treating IBDs remains a critical challenge. Here, we designed a temporally controlled therapy based on gelatin methacrylate (GelMA)-based nanocomposite hydrogels (GCS) coembedded with sulfur quantum dots (SQDs) nanoenzymes and calcium-phosphorus oligomers (CPOs.
View Article and Find Full Text PDFACS Nano
September 2025
School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.
Nitrogen-vacancy (NV) centers in diamond demonstrate advantages in biosensing due to their exceptional photostability and long spin coherence time. However, clinical applications of NV centers are significantly limited because their spin states lack responsiveness to nonmagnetic biomolecules. This work presents a nanocatalytic-amplified quantum sensing platform targeting tyrosinase (TYR), a key biomarker for melanoma.
View Article and Find Full Text PDFNanophotonics
August 2025
Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin, 300072, China.
Vortex beams, characterized by orbital angular momentum (OAM), hold significant potential in optical communications, quantum information processing, and optical manipulation. However, existing metasurface designs are largely confined to single-degree-of-freedom control, such as static OAM generation or fixed focal points, which limiting their ability to integrate polarization multiplexing with dynamic focal tuning. To address this challenge, we propose a tunable multifunctional cascaded metasurface that synergizes polarization-sensitive phase engineering with interlayer rotational coupling, overcoming conventional device limitations.
View Article and Find Full Text PDF