A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Contribution of filtration and photocatalysis to DOM removal and fouling mechanism during in-situ UV-LED photocatalytic ceramic membrane process. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of ceramic membranes and ultraviolet light-emitting diodes (UV-LEDs) has advanced the application of photocatalytic membrane for water treatment. We systematically evaluated the contribution of filtration and photocatalysis to dissolved organic matter (DOM) removal and fouling mechanism during in-situ UV-LED photocatalytic ceramic membrane filtration. The results showed that physical rejection primarily led to removal of 4-15 kDa molecules and photocatalysis further increased the removal of 1-4 kDa molecules, causing small sized microbial humic-like or protein-like materials in the permeate. In-situ UV-LED photocatalysis had an excellent effect on membrane fouling mitigation regardless of DOM sources. The dominant fouling mechanism changed from partial blockage to gel layer formation with increasing Ca concentration but did not change with UV treatment. Correlation analysis revealed that the removal of 1-4 kDa molecules contributed to the mitigation of both reversible and irreversible fouling resistance, and the small molecules were the major cause of irreversible fouling resistance. Removal of 1-4 kDa terrestrial humic acid-like contributed to the pore blockage mechanism for synthetic water. Removal of 4-15 kDa protein-like materials was closely correlated to the pore blockage mechanism for real water. Trihalomethanes (THMs) and haloacetic acids (HAAs) formation potential (FP) were both significantly reduced after photocatalytic ceramic membrane process, but precursors of nitrogenous disinfection by-products (N-DBPs) with high toxicity were not removed by filtration or by photocatalysis, which deserves attention. Membrane rejection made higher contribution to better DBPFP control than photocatalysis. This study provides novel insights into the impact of UV-LED on DOM removal, DBPFP control and fouling mitigation, promoting the development of photocatalytic ceramic membrane filtration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119298DOI Listing

Publication Analysis

Top Keywords

photocatalytic ceramic
16
ceramic membrane
16
filtration photocatalysis
12
dom removal
12
fouling mechanism
12
in-situ uv-led
12
kda molecules
12
removal 1-4
12
1-4 kda
12
contribution filtration
8

Similar Publications