A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synthesis of 1-Aminoisoquinolines and Their Application in a Host-Guest Doped Strategy To Construct Ultralong Room-Temperature Phosphorescence Materials for Bioimaging. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic ultralong room-temperature phosphorescence (RTP) materials have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, the development of these materials remains a challenging task, partially due to the lack of rational molecular design strategies and unclear luminescence mechanisms. Herein, we present a method for facile access to structurally diverse substituted 1-aminoisoquinoline derivatives through a copper-catalyzed one-pot three-component coupling reaction that provides a promising approach to rapidly assemble a library of 1-aminoisoquinolines for exploring the regularity of the host-guest doped system. A series of host-guest RTP materials with wide-ranging lifetimes from 4.4 to 299.3 ms were constructed by doping various substituted isoquinolines derivatives into benzophenone (BP). Furthermore, 4 r/BP nanoparticles could be used for in-vivo imaging with a signal-to-noise ratio value as high as 32, revealing the potential of the isoquinoline framework for the construction of high-performance RTP materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202202909DOI Listing

Publication Analysis

Top Keywords

rtp materials
12
host-guest doped
8
ultralong room-temperature
8
room-temperature phosphorescence
8
materials
5
synthesis 1-aminoisoquinolines
4
1-aminoisoquinolines application
4
application host-guest
4
doped strategy
4
strategy construct
4

Similar Publications