Publications by authors named "Lepeng Chen"

The progress of transcatheter valve replacement has significantly reduced the risk of valve replacement, increasing the demand for bioprosthetic heart valves (BHVs). Currently, the defects of BHVs, including thrombosis, poor endothelialization, calcification, and immune responses that are associated with glutaraldehyde crosslinking and their xenogeneic collagenous matrix, have accelerated the degeneration of BHVs. Herein, we constructed an endothelial function biomimetic hydrogel surface engineered non-glutaraldehyde BHV based on bioinspired catechol-crosslinking system and metal-chelation.

View Article and Find Full Text PDF

Valvular heart disease (VHD), clinically manifested as the malfunction of heart valves, greatly threatens public health worldwide. The morbidity and mortality of VHD increase significantly with age, and the high prevalence of VHD in aging society has prompted the urgency for effective treatment. Prosthetic heart valve replacement is currently recognized as the gold standard for VHD treatment.

View Article and Find Full Text PDF

The global aging population has led to an increasing prevalence of valvular heart disease (VHD), and the clinical application of bioprosthetic heart valves (BHVs) are growing with the advancement of transcatheter heart valve replacement surgery. However, BHVs, as xenogeneic pericardial tissue crosslinked with glutaraldehyde, have been affected by suboptimal cytocompatibility, thrombosis, immune response, and calcification, leading to premature degeneration and failure. Herein, a catechol-crosslinking strategy for BHVs was developed by conjugating porcine pericardia (PP) with catechols and subsequently coupling the grafted catechols to achieve the crosslinking and stabilization of BHVs.

View Article and Find Full Text PDF

High thrombogenicity and shortened lifespan have limited the application of mechanical valves and bioprosthetic valves, respectively. Tissue engineering heart valve (TEHV) holds significant potential as a favorable prosthetic valve to overcome the limitations of the current prosthetic valves, featuring the capabilities of self-pairing and adaptive remodeling. However, TEHVs, mainly fabricated from decellularized xenogeneic heart valves (DHV), still have challenges such as thrombosis, inferior endothelialization, and immune responses.

View Article and Find Full Text PDF

The prevalence of heart valve disease (HVD) has escalated worldwide, because of population aging. Currently, artificial heart valve replacement is considered the most effective treatment for HVD. The complexity and risk of heart valve replacement have been markedly reduced with the development of minimally invasive interventional techniques, which has resulted in the more widespread implantation of bioprosthetic heart valves (BHVs); however, they still present with defects including thrombosis, poor cytocompatibility, immune responses, and calcification, which reduces their service life.

View Article and Find Full Text PDF

Organic ultralong room-temperature phosphorescence (RTP) materials have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, the development of these materials remains a challenging task, partially due to the lack of rational molecular design strategies and unclear luminescence mechanisms. Herein, we present a method for facile access to structurally diverse substituted 1-aminoisoquinoline derivatives through a copper-catalyzed one-pot three-component coupling reaction that provides a promising approach to rapidly assemble a library of 1-aminoisoquinolines for exploring the regularity of the host-guest doped system.

View Article and Find Full Text PDF

Tracking liver polarity with noninvasive and dynamic imaging techniques is helpful to better understand the non-alcoholic fatty liver (NAFL). Herein, a novel near-infrared (NIR) fluorescent probe is constructed using a "symmetry collapse" strategy. The structure modification leads to the conversion of locally excited state fluorescence to charge transfer state fluorescence.

View Article and Find Full Text PDF

A palladium-catalyzed carbon-carbon bond activation-initiated reaction of 2-(3-phenyloxiran-2-yl)benzonitriles with arylboronic acids is reported. Multiple chemical bonds were cleavaged and reconstructed via β-carbon elimination in this reaction, enabling the construction of valuable benzo-fused dipyrromethenes that are difficult to prepare by other methods. Additionally, a series of benzannulated boron dipyrromethenes are synthesized and show practical significance in terms of expanding the applications and types of fluorescent materials.

View Article and Find Full Text PDF

The first example of the nickel-catalyzed tandem addition/cyclization of 2-(cyanomethyl)benzonitriles with arylboronic acids in 2-MeTHF has been developed, which provides the facile synthesis of aminoisoquinolines with good functional group tolerance under mild conditions. This chemistry has also been successfully applied to the synthesis of isoquinolones by the tandem reaction of methyl 2-(cyanomethyl)benzoates with arylboronic acids. The use of the bio-based and green solvent 2-MeTHF as the reaction medium makes the synthesis process environmentally benign.

View Article and Find Full Text PDF