Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion.

Small

Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO and electrochemical synthesis of H O are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202203147DOI Listing

Publication Analysis

Top Keywords

energy conversion
16
electrochemical energy
12
zif-derived superstructures
12
zeolitic imidazolate
8
atomic sites
8
single- dual-atom
8
superstructures
7
electrochemical
6
superstructures zeolitic
4
imidazolate frameworks
4

Similar Publications

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF

In response to the new operational quantities proposed in ICRU Report 95, we calculated conversion coefficients for monoenergetic photon calibration fields-specifically, theAm γ-ray calibration field and the fluorescence X-ray calibration field-both of which are listed in the annex of the ISO 4037 standard series. These coefficients were derived using measured photon spectral fluence. Additionally, correction factors for air density were determined for the low-energy fluorescence X-ray calibration field.

View Article and Find Full Text PDF

Simultaneous removal of NO and propane by solid electrolyte cells with LaPrBaNiO bifunctional electrodes.

J Hazard Mater

September 2025

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:

Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.

View Article and Find Full Text PDF

Lead-free electroceramics have attracted significant research interest as alternatives to lead-containing systems due to concerns related to lead's toxicity to human health and the environment. Solid solutions based on bismuth sodium titanate (BNT) and barium titanate (BT), particularly those with compositions near the morphotropic phase boundary (MPB), such as 0.94 BiNaTiO-0.

View Article and Find Full Text PDF

Precise Modulation of Zeolite Acidity by Alkali Metal Ions for Enhancing Catalytic Performance in CO Cycloaddition Reactions.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.

The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.

View Article and Find Full Text PDF