Blast phase of chronic myeloid leukemia with concurrent BCR::ABL1 and SET::NUP214: A report of two cases.

Mol Carcinog

NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm defined by the presence of t(9;22)(q34;q11.2)/BCR::ABL1. Additional chromosomal abnormalities play an important role in the progression to CML. However, the additional fusion gene was rarely reported such as CBFB::MYH11. In this report, we described two cases of the co-occurrence of BCR::ABL1 and SET::NUP214 in CML-BP for the first time, which is associated with poor outcomes during tyrosine kinase inhibitor (TKI) treatment. Meanwhile, we retrospectively analyzed SET::NUP214 fusion transcript of the two cases at initial diagnosis of the CML chronic phase by quantitative RT-PCR, and detected at a ratio of 1.63% and 1.50%, respectively. SET::NUP214 may promote disease progression during the transformation of CML. This study highlights the importance of extended molecular testing at the initial diagnosis of CML-CP at TKI resistance and/or disease transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23480DOI Listing

Publication Analysis

Top Keywords

chronic myeloid
8
myeloid leukemia
8
bcrabl1 setnup214
8
initial diagnosis
8
blast phase
4
phase chronic
4
leukemia concurrent
4
concurrent bcrabl1
4
setnup214
4
setnup214 report
4

Similar Publications

Toll-like receptors (TLRs) are essential components of the innate immune system, functioning as pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In hematological malignancies, particularly myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML), TLRs influence inflammation, disease progression, and therapeutic response. This review highlights the prognostic relevance of TLR expression, the role of the MyD88 signaling pathway in clonal evolution, and the dual nature of TLR-mediated immune responses, either promoting antitumor activity or contributing to leukemogenesis.

View Article and Find Full Text PDF

Chronic myeloid leukaemia (CML) accounts for 2% of leukaemias in children and 9% in adolescents. While the BCR::ABL1 fusion gene remains a hallmark across all age groups, emerging evidence suggests that paediatric CML exhibits unique biological and clinical characteristics compared to its adult counterpart. Children often present with more aggressive clinical features and show distinct treatment response patterns.

View Article and Find Full Text PDF

Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1), persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells, such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses, demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a broad spectrum of physical and cognitive impairments. Myeloid cells within the CNS, including microglia and border-associated macrophages, play a central role in the neuroinflammatory processes associated with MS. Activation of these cells contributes to the local inflammatory response and promotes the recruitment of additional immune cells into the CNS.

View Article and Find Full Text PDF

Background: Population pharmacokinetic models can potentially provide suggestions for an initial dose and the magnitude of dose adjustment during therapeutic drug monitoring procedures of imatinib. Several population pharmacokinetic models for imatinib have been developed over the last two decades. However, their predictive performance is still unknown when extrapolated to different populations, especially children.

View Article and Find Full Text PDF