Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the characteristic of high recognition rate and strong network robustness, convolutional neural network has now become the most mainstream method in the field of crop disease recognition. Aiming at the problems with insufficient numbers of labeled samples, complex backgrounds of sample images, and difficult extraction of useful feature information, a novel algorithm is proposed in this study based on attention mechanisms and convolutional neural networks for cassava leaf recognition. Specifically, a combined data augmentation strategy for datasets is used to prevent single distribution of image datasets, and then the PDRNet (plant disease recognition network) combining channel attention mechanism and spatial attention mechanism is proposed. The algorithm is designed as follows. Firstly, an attention module embedded in the network layer is deployed to establish remote dependence on each feature layer, strengthen the key feature information, and suppress the interference feature information, such as background noise. Secondly, a stochastic depth learning strategy is formulated to accelerate the training and inference of the network. And finally, a transfer learning method is adopted to load the pretrained weights into the model proposed in this study, with the recognition accuracy of the model enhanced by means of detailed parameter adjustments and dynamic changes in the learning rate. A large number of comparative experiments demonstrate that the proposed algorithm can deliver a recognition accuracy of 99.56% on the cassava disease image dataset, reaching the state-of-the-art level among CNN-based methods in terms of accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617697PMC
http://dx.doi.org/10.1155/2022/1569911DOI Listing

Publication Analysis

Top Keywords

attention mechanism
12
cassava disease
8
convolutional neural
8
disease recognition
8
proposed study
8
proposed algorithm
8
recognition accuracy
8
recognition
6
attention
5
network
5

Similar Publications

Oral immunotherapy in children with allergic diseases: past, present and future.

Minerva Pediatr (Torino)

September 2025

Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy.

Allergen immunotherapy (AIT) is the only treatment capable of modifying the natural history of allergic diseases by promoting immune tolerance. Initially developed for respiratory allergies, AIT has expanded to include food allergies, particularly through oral immunotherapy (OIT). This review explores the historical evolution, current applications, and future directions of AIT in pediatric patients.

View Article and Find Full Text PDF

Exploring the antiangiogenic effects of Phospholipases A from Bothrops diporus venom.

Cell Tissue Res

September 2025

Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Purpose Of Review: Despite major advances in the treatment and prevention of atherosclerotic cardiovascular disease (ASCVD), a substantial burden of residual risk remains Obesity has been redefined as a primary and independent drivers of cardiovascular morbidity and mortality warranting focused attention.

Recent Findings: Obesity is now recognized as a chronic disease and a central contributor to residual cardiovascular risk through mechanisms including systemic inflammation, insulin resistance, dyslipidemia, and endothelial dysfunction. This review addresses the limitations of conventional obesity management and highlights emerging pharmacological therapies targeting the underlying adiposopathy.

View Article and Find Full Text PDF

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF