98%
921
2 minutes
20
Microwave heating technology performs the characteristics of fast heating, high efficiency, green energy saving and easy control, which makes it deeply penetrate into the food industry and home cooking. It has the potential to alter the appearance and flavor of food, enhance nutrient absorption, and speed up the transformation of active components, which provides an opportunity for the development of innovation foods. However, the change of food driven by microwave heating are very complex, which often occurs beyond people's cognition and blocks the development of new food. It is thus necessary to explore the transformation mechanism and influence factors from the perspectives of microwave technology and food nutrient diversity. This manuscript focuses on the nutritional macromolecules in food, such as starch, lipid and protein, and systematically analyzes the change rule of structure, properties and function under microwave heating. Then, the flavor, health benefits, potential safety risks and bidirectional allergenicity associated with microwave heating are fully discussed. In addition, the development of new functional foods for health needs and future market based on microwave technology is also prospected. It aims to break the scientific fog of microwave technology and provide theoretical support for food science to understand the change law, control the change process and use the change results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607893 | PMC |
http://dx.doi.org/10.3389/fnut.2022.941527 | DOI Listing |
Plant Foods Hum Nutr
September 2025
Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, 351-8501, Asaka, Saitama, Japan.
Pea shoots (Pisum sativum) are well known to have nutritional benefits when consumed raw; however, the effects of home cooking on their bioactive compounds remain unclear. Therefore, we investigated how different cooking methods affect the antioxidant activity and stability of antioxidants. Our evaluation revealed that antioxidant activity is preserved by steaming but significantly reduced by microwaving and boiling, which also causes weight loss during cooking.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; College of Food Science, Southwest University, Chongqing 400715, China. Electronic address:
This study systematically compared the effects of microwave (MW) and conventional thermal (CT) processing on microbial inactivation, enzyme activity, protein retention, and nutritional characteristics of bovine milk under pasteurization (70 °C for 20 s) and ultra-high temperature (UHT) sterilization conditions. Both technologies achieved effective microbial reduction (>4 log CFU/mL) for Escherichia coli, Staphylococcus aureus, and Salmonella spp., complying with EU and FDA safety standards.
View Article and Find Full Text PDFJ Food Prot
September 2025
Department of Processing Technology, Nofima AS, 4021 Stavanger.
This study evaluated the effectiveness of combining recyclable packaging materials in preserving the quality of microwave-treated chicken meat. Specifically, it assessed the combination of polyethylene terephthalate (PET) and polypropylene (PP) with modified atmosphere packaging (100% N and 60% CO:40% N). Quality parameters, such as cook loss, colour, microbiological stability, and sensory analysis, were monitored over 36 days.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P. R. China.
Aircraft confronting harsh meteorological conditions and radar detection environments during high-altitude flights face significant risks, which can threaten flight safety. This study designs and fabricates a novel Jerusalem cross-inspired Frequency Selective Surface (FSS). Initially, rGO powder with an optimized reduction degree is synthesized as the conductive filler.
View Article and Find Full Text PDFBioresour Technol
September 2025
Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates. Ele
Electrotechnology has recently emerged as an eco-friendly method for enhancing microalgal processes. Electric fields can be applied to microalgae at different stages to improve their biomass productivity, high-value products (HVPs) content, harvesting efficiency, and cell disruption for biomolecule recovery. Incorporating them into microalgal processes can significantly contribute to achieving a circular bioeconomy.
View Article and Find Full Text PDF