98%
921
2 minutes
20
Circular RNAs (circRNAs) are widely expressed in eukaryotes. However, only a subset has been functionally characterized. We identify and validate a collection of circRNAs in Drosophila, and show that depletion of the brain-enriched circRNA Edis (circ_Ect4) causes hyperactivation of antibacterial innate immunity both in cultured cells and in vivo. Notably, Edis depleted flies display heightened resistance to bacterial infection and enhanced pathogen clearance. Conversely, ectopic Edis expression blocks innate immunity signaling. In addition, inactivation of Edis in vivo leads to impaired locomotor activity and shortened lifespan. Remarkably, these phenotypes can be recapitulated with neuron-specific depletion of Edis, accompanied by defective neurodevelopment. Furthermore, inactivation of Relish suppresses the innate immunity hyperactivation phenotype in the fly brain. Moreover, we provide evidence that Edis encodes a functional protein that associates with and compromises the processing and activation of the immune transcription factor Relish. Importantly, restoring Edis expression or ectopic expression of Edis-encoded protein suppresses both innate immunity and neurodevelopment phenotypes elicited by Edis depletion. Thus, our study establishes Edis as a key regulator of neurodevelopment and innate immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612488 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1010429 | DOI Listing |
Mol Biol Rep
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDFmSphere
September 2025
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Control of intracellular pathogens is a critical element of host defense. Defining the molecular mechanisms by which the host restricts or eliminates these pathogens may inform the development of novel immunotherapeutics and antimicrobial strategies, particularly in the face of rising antibiotic resistance. In parallel, understanding how pathogens subvert these immune responses may yield new approaches to disrupt virulence rather than viability.
View Article and Find Full Text PDFPediatr Infect Dis J
September 2025
From the Pediatric Infectious Diseases Unit, Gregorio Marañón University Hospital, Madrid, Spain.
Background: Vaccination is a key strategy to reduce infectious disease mortality. In pediatric heart transplant recipients (HTRs), the use of immunosuppressive therapy weakens immune responses, increasing the risk of viral infections. This study aimed to evaluate the immunogenicity of hepatitis B virus (HBV) revaccination in this vulnerable population.
View Article and Find Full Text PDF