98%
921
2 minutes
20
Streptococcosis is one of the major diseases that causes devastation to farmed fish, leading to significant economic losses all around the world. Currently, two serotypes of Streptococcus agalactiae, serotype Ia and III, have been identified as virulent strains and major causative agents of the disease in farmed Nile tilapia (Oreochromis niloticus Linn.) in Thailand. Upon inactivated vaccine development, monovalent inactivated whole-cell vaccines demonstrated high specific antibody production against homologous serotypes and limited production with heterologous serotypes. However, for higher efficacy, a bivalent streptococcal vaccine was designed to maximize protective immunity to both serotypes. Interestingly, our bivalent vaccine could successfully induce specific antibody production against both serotypes with similar levels, and the response could extend over the 8 weeks of the experimental period. Evaluation of vaccines in the laboratory scale revealed relative percent survival (RPS) of vaccinated tilapia to serotype Ia (81.2 ± 9.4%) and serotype III (72.2 ± 4.8%), respectively. The efficacy of the bivalent vaccine showed significant RPS higher than the monovalent vaccine (p < 0.05) at 30 days, and the protection of all those vaccines was reduced thereafter. Evaluation of the vaccine in a farm trial in different locations in Thailand revealed the efficacy of the bivalent vaccine in increasing the production yield by greater than 80% in all tested farms in 2015 and 2021. Taken together, this study affirms the efficacy of the bivalent streptococcal vaccine in the prevention of streptococcus disease in Nile tilapia, which could be used in different areas. This vaccine development could be effectively applied in the tilapia culture industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610196 | PMC |
http://dx.doi.org/10.3390/vaccines10101625 | DOI Listing |
Nat Biotechnol
September 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Antibody-drug conjugates (ADCs) are effective targeted therapeutics but are limited in their ability to incorporate less-potent payloads, varied drug mechanisms of action, different drug release mechanisms and tunable drug-to-antibody ratios. Here we introduce a technology to overcome these limitations called 'antibody-bottlebrush prodrug conjugates' (ABCs). An ABC consists of an IgG1 monoclonal antibody covalently conjugated to the terminus of a compact bivalent bottlebrush prodrug that has payloads bound through cleavable linkers and polyethylene glycol branches.
View Article and Find Full Text PDFCochrane Database Syst Rev
September 2025
Institute for Evidence in Medicine, Medical Center - University of Freiburg / Medical Faculty - University of Freiburg, Freiburg, Germany.
Rationale: Cervical cancer is the fourth most common cancer affecting women worldwide, caused by persistent infection with oncogenic human papillomavirus (HPV) types. While HPV infections usually resolve spontaneously, persistent infections with high-risk HPV types can progress to premalignant glandular or - mostly - squamous intraepithelial lesions, usually classified in cervical intraepithelial neoplasia (CIN). Women with CIN 2 and CIN 3 (i.
View Article and Find Full Text PDFInt J Mol Med
November 2025
Department of Basic Medical Science, Guangxi Health Science College, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China.
Chimeric antigen receptor (CAR) T cell therapy is a type of cellular immunotherapy showing promising clinical effectiveness and high precision. CAR‑T cells express membrane receptors with high specificity, which enable them to identify certain target antigens generated by cancerous cells. The three primary structural elements of the CAR are the extracellular domain, transmembrane domain and cytoplasmic domain.
View Article and Find Full Text PDFbioRxiv
August 2025
Gladstone Institutes, San Francisco, CA 94158, USA.
mRNA vaccines emerged as a leading vaccine technology during the COVID-19 pandemic. However, their sustained protective efficacies were limited by relatively short-lived antibody responses and the emergence of SARS-CoV-2 variants, necessitating frequent and variant-updated boosters. We recently developed the ESCRT- and ALIX-binding region (EABR) mRNA vaccine platform, which encodes engineered immunogens that induce budding of enveloped virus-like particles (eVLPs) from the plasma membrane, thereby resulting in presentation of immunogens on cell surfaces and eVLPs.
View Article and Find Full Text PDFActa Pharm Sin B
August 2025
The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China.
Allergic rhinitis (AR), a globally prevalent immune-mediated inflammatory condition, is still an incurable disease. In the present study, we have validated the impact of the Kelch-like ECH associated protein 1 (Keap1)-related oxidative stress and inflammatory response in clinical AR patient peripheral blood and nasal swab samples, emphasizing the biological relevance of Keap1 and AR. Targeting Keap1 -nuclear factor erythroid 2-related factor 2 (Nrf2) related anti-oxidative stress may be effective for AR intervention.
View Article and Find Full Text PDF