98%
921
2 minutes
20
Elevated atmospheric CO concentrations (eCO) regulate plant architecture and susceptibility to insects. We explored the mechanisms underpinning these responses in wild type (WT) peas and mutants defective in either strigolactone (SL) synthesis or signaling. All genotypes had increased shoot height and branching, dry weights and carbohydrate levels under eCO, demonstrating that SLs are not required for shoot acclimation to eCO. Since shoot levels of jasmonic acid (JA) and salicylic acid (SA) tended to be lower in SL signaling mutants than the WT under ambient conditions, we compared pea aphid performance on these lines under both CO conditions. Aphid fecundity was increased in the SL mutants compared to the WT under both ambient and eCO conditions. Aphid infestation significantly decreased levels of JA, isopentenyladenine, -zeatin and gibberellin A4 and increased ethylene precursor ACC, gibberellin A1, gibberellic acid (GA) and SA accumulation in all lines. However, GA levels were increased less in the SL signaling mutants than the WT. These studies provide new insights into phytohormone responses in this specific aphid/host interaction and suggest that SLs and gibberellins are part of the network of phytohormones that participate in host susceptibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602761 | PMC |
http://dx.doi.org/10.3390/ijms232012160 | DOI Listing |
Nat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFJ Neurosci
September 2025
Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, United States.
Presenilin mutations are the most common cause of familial Alzheimer's disease (FAD), but the mechanisms by which they disrupt neuronal function remain unresolved, particularly in relation to γ-secretase activity. Using , we show that the presenilin ortholog SEL-12 supports synaptic transmission and axonal integrity through a pathway involving the ryanodine receptor RYR-1. Loss-of-function mutations in either or reduce neurotransmitter release and cause neuronal structural defects, with no additional impairment in double mutants, suggesting a shared pathway.
View Article and Find Full Text PDFProc Biol Sci
September 2025
School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
Insects, such as , rely on innate immune defences to combat microbial threats. Antimicrobial peptides (AMPs) play an important role in limiting pathogen entry and colonization. Despite intensive research into the regulation and biochemical properties of antimicrobial peptides, their exact significance has remained uncertain due to the challenges of mutating small genes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
College of Life Science, Capital Normal University, 100048, Beijing, China. Electronic address:
CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are central components in plant signaling networks, orchestrating growth, development, and stress responses. However, their functions in thermomorphogenesis-an essential thermal-adaptation response-particularly their coordination with the core transcription factors PHYTOCHROME-INTERACTING FACTORs 4 and 7 (PIF4 and PIF7), remains elusive. Here we show that AtCPK4/5/6/11/12 physically interact with PIF4 and PIF7.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDF