Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the outbreak and spread of COVID-19, a deep investigation of SARS-CoV-2 is urgent. Direct usage of this virus for scientific research could provide reliable results and authenticity. However, it is strictly constrained and unrealistic due to its high pathogenicity and infectiousness. Considering its biosafety, different systems and technologies have been employed in immunology and biomedical studies. In this study, phage display technology was used to construct a nonpathogenic model for COVID-19 research. The nucleocapsid protein of SARS-CoV-2 was fused with the M13 phage capsid p3 protein and expressed on the M13 phages. After validation of its successful expression, its potential as the standard for qPCR quantification and affinity with antibodies were confirmed, which may show the possibility of using this nonpathogenic bacteriophage to replace the pathogenic virus in scientific research concerning SARS-CoV-2. In addition, the model was used to develop a system for the classification and identification of different samples using ATR-FTIR, which may provide an idea for the development and evaluation of virus monitoring equipment in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607219PMC
http://dx.doi.org/10.3390/toxins14100683DOI Listing

Publication Analysis

Top Keywords

nucleocapsid protein
8
phage display
8
virus scientific
8
construction characterization
4
characterization application
4
application nonpathogenic
4
nonpathogenic virus-like
4
virus-like model
4
sars-cov-2
4
model sars-cov-2
4

Similar Publications

Background: Enteroviruses, including Coxsackie B (CVB) viruses, can cause severe diseases such as myocarditis, pancreatitis, and meningitis. Vaccines can prevent these complications, but conserved non-neutralizing epitopes in the viral capsid may limit their effectiveness. The immunodominant PALXAXETG motif, located in the VP1 N-terminus, is a highly conserved region in enteroviruses that elicits non-neutralizing antibody responses.

View Article and Find Full Text PDF

Complete genome sequence of a putative novel orthotospovirus species identified in fruits from South Africa.

Microbiol Resour Announc

September 2025

Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands.

We report two complete genome sequences of a putative novel orthotospovirus species in pepper fruits ( sp.) from South Africa, provisionally named (Capsicum orthotospovirus 1; CaV1). Its nucleocapsid protein shows less than 88% amino acid identity with other orthotospoviruses.

View Article and Find Full Text PDF

Indole-based natural product for plant protection: Discovery of alkaloid barrettin and its derivatives as novel antiviral and antifungal agents.

Pestic Biochem Physiol

November 2025

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.

View Article and Find Full Text PDF

Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.

View Article and Find Full Text PDF

Design and characterisation of high-affinity aptamers for detecting HIV integrase.

Anal Chim Acta

November 2025

HIV-1 Molecular Epidemiology Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Microbiology Department, Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, 28034, Spain. Electronic address:

Background: Currently, 39.9 million people are infected with the human immunodeficiency virus (HIV), and 1.3 million new infections occur annually, with over 170 circulating variants.

View Article and Find Full Text PDF