98%
921
2 minutes
20
Predator-prey interactions shape ecosystem stability and are influenced by changes in ecosystem productivity. However, because multiple biotic and abiotic drivers shape the trophic responses of predators to productivity, we often observe patterns, but not mechanisms, by which productivity drives food web structure. One way to capture mechanisms shaping trophic responses is to quantify trophic interactions among multiple trophic groups and by using complementary metrics of trophic ecology. In this study, we combine two diet-tracing methods: diet DNA and stable isotopes, for two trophic groups (top predators and intermediate predators) in both low- and high-productivity habitats to elucidate where in the food chain trophic structure shifts in response to changes in underlying ecosystem productivity. We demonstrate that while top predators show increases in isotopic trophic position (N) with productivity, neither their isotopic niche size nor their DNA diet composition changes. Conversely, intermediate predators show clear turnover in DNA diet composition towards a more predatory prey base in high-productivity habitats. Taking this multi-trophic approach highlights how predator identity shapes responses in predator-prey interactions across environments with different underlying productivity, building predictive power for understanding the outcomes of ongoing anthropogenic change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601239 | PMC |
http://dx.doi.org/10.1098/rsbl.2022.0364 | DOI Listing |
JMIR Res Protoc
September 2025
Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania.
Background: Fermented foods vary significantly by food substrate and regional consumption patterns. Although they are consumed worldwide, their intake and potential health benefits remain understudied. Europe, in particular, lacks specific consumption recommendations for most fermented foods.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFVet Med Sci
September 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.
Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.
View Article and Find Full Text PDFChaos
September 2025
Department of Mathematics, Visva-Bharati, Santiniketan 731235, India.
Biological models are important in describing species interaction, disease spread, and environmental processes. One key aspect in improving the predictive capability of these models is deciding which parametrization is used to formulate the mathematical model. Considering two distinct functions with similar shapes and the same qualitative properties in a model can lead to markedly different model predictions.
View Article and Find Full Text PDF