Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antarctic deserts, such as the McMurdo Dry Valleys (MDV), represent extremely cold and dry environments. Consequently, MDV are suitable for studying the environment limits on the cycling of key elements that are necessary for life, like nitrogen. The spatial distribution and biogeochemical drivers of nitrogen-cycling pathways remain elusive in the Antarctic deserts because most studies focus on specific nitrogen-cycling genes and/or organisms. In this study, we analyzed metagenome and relevant environmental data of 32 MDV soils to generate a complete picture of the nitrogen-cycling potential in MDV microbial communities and advance our knowledge of the complexity and distribution of nitrogen biogeochemistry in these harsh environments. We found evidence of nitrogen-cycling genes potentially capable of fully oxidizing and reducing molecular nitrogen, despite the inhospitable conditions of MDV. Strong positive correlations were identified between genes involved in nitrogen cycling. Clear relationships between nitrogen-cycling pathways and environmental parameters also indicate abiotic and biotic variables, like pH, water availability, and biological complexity that collectively impose limits on the distribution of nitrogen-cycling genes. Accordingly, the spatial distribution of nitrogen-cycling genes was more concentrated near the lakes and glaciers. Association rules revealed non-linear correlations between complex combinations of environmental variables and nitrogen-cycling genes. Association rules for the presence of denitrification genes presented a distinct combination of environmental variables from the remaining nitrogen-cycling genes. This study contributes to an integrative picture of the nitrogen-cycling potential in MDV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583160PMC
http://dx.doi.org/10.3389/fmicb.2022.927129DOI Listing

Publication Analysis

Top Keywords

nitrogen-cycling genes
24
spatial distribution
12
nitrogen-cycling
10
genes
9
distribution biogeochemical
8
biogeochemical drivers
8
antarctic deserts
8
nitrogen-cycling pathways
8
picture nitrogen-cycling
8
nitrogen-cycling potential
8

Similar Publications

An increase in para-chloro-meta-xylenol (PCMX) pollution presents a significant obstacle to ecological security. The present study employed a series of microcosmic experiments to investigate the temporal dynamics of NO emissions and key genes involved in nitrogen cycle during the biodegradation process of PCMX. The results demonstrated that the degradation of PCMX exhibited first-order kinetics, with a calculated half-life of 231 days.

View Article and Find Full Text PDF

Salinity-driven trade-offs between nitrogen removal and microbiome dynamics in Fe-C-CWs toward saline aquaculture tailwater management.

Water Res

August 2025

College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China. Electronic address:

Salinity-driven nitrogen removal mechanisms in iron-carbon CWs (Fe-C-CWs) remain poorly understood for aquaculture tailwater management. Through a 155-day trial under four salinities (designated as S0, S10, S20, and S30), result showed that S20 achieved optimal removals of total nitrogen (84.9 ± 3.

View Article and Find Full Text PDF

Introduction: The rice-crab coculture system is ecologically sustainable with efficient resource utilization, but the soil nitrogen cycling mechanisms underlying yield limitations in different coculture models remain unclear. Here, we aimed to identify yield-limiting factors by comparing rice productivity between the conventional rice-crab coculture model (CK) and an optimized model (12 rows cultivated-1 row empty, ERC-12). We hypothesized that ERC-12 enhances crab activity in empty rows, thereby stimulating nifH-mediated soil nitrogen fixation to offset yield losses caused by reduced planting density.

View Article and Find Full Text PDF

Ammonia oxidation plays a critical role in nitrogen cycling within riparian zones. To investigate this process in saline-alkali soils of the Yinbei region, northern Yinchuan, Ningxia, we selected five distinct riparian types along the Third Drainage Ditch: gravel-reed mixed zone, reed zone, high-salt zone, embankment zone and bare soil zone. We quantified soil potential nitrification rates (PNR), environmental factors, and analyzed ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities via me-tagenomics and qPCR targeting genes.

View Article and Find Full Text PDF

Impact of protist predation on bacterial community traits in river sediments.

Water Res

August 2025

Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists.

View Article and Find Full Text PDF