98%
921
2 minutes
20
Tetrabromobisphenol A (TBBPA) is widely used in industrial production as a halogenated flame retardant (HFR). Its substitutes and derivatives are also commonly employed as HFRs. Consequently, they can be frequently detected in environmental and human samples. The potential developmental toxicity of TBBPA and its analogs, particularly to the human liver, is still controversial or not thoroughly assessed. Therefore, in this study, we focused on the early stages of human liver development to explore the toxic effects of those HFRs, by using a human embryonic stem cell liver differentiation model. We concluded that nanomolar treatments (1, 10, and 100 nM) of those pollutants may not exert significant interference to liver development and functions. However, at 5 μM doses, TBBPA and its analogs severely affected liver functions, such as glycogen storage, and caused lipid accumulation. Furthermore, TBBPA-bis(allyl ether) showed the most drastic effects among the six compounds tested. Taken together, our findings support the view that TBBPA can be used safely, provided its amounts are strictly controlled. Nonetheless, TBBPA alternatives or derivatives may exhibit stronger adverse effects than TBBPA itself, and may not be safer choices for manufacturing applications when utilized in a large and unrestricted way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136924 | DOI Listing |
J Cachexia Sarcopenia Muscle
October 2025
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea.
Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.
Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.
Cochrane Database Syst Rev
September 2025
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
Background: Radiotherapy is the mainstay of treatment for head and neck cancer (HNC) but may induce various side effects on surrounding normal tissues. To reach an optimal balance between tumour control and toxicity prevention, normal tissue complication probability (NTCP) models have been reported to predict the risk of radiation-induced side effects in patients with HNC. However, the quality of study design, conduct, and analysis (i.
View Article and Find Full Text PDFCureus
August 2025
Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer - Vancouver, Vancouver, CAN.
Introduction In select tumor sites, symptom palliation and local control can be improved through delivering higher biological equivalent doses (BED) of radiotherapy. However, not all patients are suitable candidates for stereotactic body radiation therapy (SBRT). The 30 Grays in five fractions (30/5) regimen is a conformal, hypofractionated regimen that offers a higher BED compared to conventional palliative radiotherapy.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.
Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua
Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.
View Article and Find Full Text PDF