Multicomponent Assembly of Complex Oxindoles by Enantioselective Cooperative Catalysis.

Angew Chem Int Ed Engl

Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chiral oxindoles are important chemical scaffolds found in many natural products, and their enantioselective synthesis thus attracts considerable attention. Highly diastereo- and enantioselective synthetic methods for constructing C3 quaternary oxindoles have been well-developed. However, the efficient synthesis of chiral 3-substituted tertiary oxindoles has been rarely reported due to the ease of racemization of the tertiary stereocenter via enolization. Therefore, we herein report on the multicomponent assembly (from N-aryl diazoamides, aldehydes, and enamines/indoles) of complex oxindoles by enantioselective cooperative catalysis. These reactions proceed under mild conditions and show broad substrate scope, affording the desired coupling products (>90 examples) with good to excellent stereocontrol. Additionally, this research also demonstrates the synthetic potential of this annulation by constructing the 6,6,5-tricyclic lactone core structure of Speradine A.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202213407DOI Listing

Publication Analysis

Top Keywords

multicomponent assembly
8
complex oxindoles
8
oxindoles enantioselective
8
enantioselective cooperative
8
cooperative catalysis
8
oxindoles
5
assembly complex
4
enantioselective
4
catalysis chiral
4
chiral oxindoles
4

Similar Publications

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF

Quercetin-Hovenia dulcis polysaccharide complexes inhibit α-glucosidase and mitigate hyperglycemia.

Int J Biol Macromol

September 2025

College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei, 071001, PR China. Electronic address:

Polysaccharides and polyphenols are major bioactive constituents of plant-based foods, and their efficacy is often modulated by intermolecular interactions. In this study, non-covalent binary complexes of Hovenia dulcis polysaccharides (HDPs) and quercetin were synthesized via molecular self-assembly. Structural characterization confirmed the successful non-covalent association of quercetin onto alcohol-precipitated HDP fractions-HDPs30, HDPs50, and HDPs70.

View Article and Find Full Text PDF

Origami frustration and its influence on energy landscapes of origami assemblies.

Proc Natl Acad Sci U S A

September 2025

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.

Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states.

View Article and Find Full Text PDF

High-entropy materials (HEMs) have garnered intense attention due to their unique properties derived from compositional complexity, demonstrating promise in a wide range of applications, from catalysis to energy storage and beyond. Traditionally, HEMs have been primarily concerned with metal alloys. However, expanding the principle to organic systems, specifically high-entropy molecular nanostructures, remains underexplored.

View Article and Find Full Text PDF

Background: Pulmonary rehabilitation (PR) is a key treatment for chronic obstructive pulmonary disease (COPD) recommended by all guidelines. However, programmes vary widely and the optimal combination of components to maximise benefits and efficiency remains unknown. We aimed to use the novel technique of component network meta-analysis (cNMA) to investigate the relative contribution of 1) exercise modality and intensity, 2) non-exercise components, 3) type of supervision, and 4) programme duration of PR for people with COPD.

View Article and Find Full Text PDF