98%
921
2 minutes
20
Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18554 | DOI Listing |
J Forensic Sci
September 2025
Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul (UEMS), Dourados, Mato Grosso do Sul, Brazil.
Blowflies are important to estimate the postmortem interval (PMI), since they are the first to interact with the carcass. However, depending on the decomposition stage, only pupae can be found. A method that has currently been suggested is the use of cuticular hydrocarbons (CHCs) in forensically important fly species to aid in estimating PMI; however, studies from the pupal stage are rare.
View Article and Find Full Text PDFDent Mater J
September 2025
Biomaterials Lab, Dentistry School, Federal University of Pará.
This study evaluated the chemical profile of toothpastes (TPs) and mouthrinses (MRs) and their effects on tooth enamel ultrastructure, and the viability of human dental pulp fibroblasts (hDPF). Four TPs and MRs containing different remineralizing agents (arginine, potassium nitrate, pro arginine, and stannous chloride) were analyzed for pH, titratable acidity (TA), and ion concentrations (Ca, K, Na). Enamel ultrastructure was evaluated using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Henan Engineering Laboratory of Pest Biological Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China.
Henosepilachna vigintioctopunctata represents a significant economic pest, typically controlled through the use of chemical insecticides. The introduction of RNA interference (RNAi) technology has opened new avenues for biopesticide development, leading to the identification of various genes that are crucial for the growth and development of insects. However, the efficient screening of target genes in H.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
Given the widespread presence of imidacloprid in aquatic environments and the limited research on its impact on amphibian renal health, in this study, we investigated the effects of this commonly used neonicotinoid insecticide on kidney function and molecular mechanisms in Xenopus laevis. Employing a 28-day exposure model, histopathological changes and enzymatic responses induced by two concentrations of imidacloprid were examined, along with gene expression alterations and metabolic disruptions at environmentally relevant levels. The results highlighted significant renal histopathological damage and changes in key enzymes involved in oxidative stress and neurotoxicity, such as superoxide dismutase, glutathione S-transferase, and acetylcholinesterase.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.
View Article and Find Full Text PDF