98%
921
2 minutes
20
Background: Steroid resistant nephrotic syndrome (SRNS) represents a significant renal disease burden in childhood and adolescence. In contrast to steroid sensitive nephrotic syndrome (SSNS), renal outcomes are significantly poorer in SRNS. Over the past decade, extensive genetic heterogeneity has become evident while disease-causing variants are still only identified in 30% of cases in previously reported studies with proportion and type of variants identified differing depending on the age of onset and ethnical background of probands. A genetic diagnosis however can have implications regarding clinical management, including kidney transplantation, extrarenal disease manifestations, and, in some cases, even causal therapy. Genetic diagnostics therefore play an important role for the clinical care of SRNS affected individuals.
Methodology And Results: Here, we performed Sanger sequencing and subsequent exome sequencing in 30 consanguineous Iranian families with a child affected by SRNS with a mean age of onset of 16 months. We identified disease-causing variants and one variant of uncertain significance in 22 families (73%), including variants in (30%), followed by (20%), (%) as well as in , and in single cases. Eight of these variants have not previously been reported as disease-causing, including four variants and one variant in , and each.
Conclusion: In line with previous studies in non-Iranian subjects, we most frequently identified disease-causing variants in and . While Sanger sequencing of can be considered as first diagnostic step in non-congenital cases, the genetic heterogeneity underlying SRNS renders next-generation sequencing based diagnostics as the most efficient genetic screening method. In accordance with the mainly autosomal recessive inheritance pattern, diagnostic yield can be significantly higher in consanguineous than in outbred populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555279 | PMC |
http://dx.doi.org/10.3389/fped.2022.974840 | DOI Listing |
Nat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
In standard short-read whole-exome sequencing (WES), capture probes are typically designed to target the protein-coding regions (CDS), and regions outside the exons-except for adjacent intronic sequences-are rarely sequenced. Although the majority of known pathogenic variants reside within the CDS as nonsynonymous variants, some disease-causing variants are located in regions that are difficult to detect by WES alone, such as deep intronic variants and structural variants, often requiring whole-genome sequencing (WGS) for detection. Moreover, WES has limitations in reliably identifying pathogenic variants within mitochondrial DNA or repetitive regions.
View Article and Find Full Text PDFPLoS One
September 2025
People's Hospital of Ningxia Hui Autonomous Region, Ningxia Eye Hospital, Yinchuan, China.
Purpose: To investigate the variants in 18 disease-causing genes associated with nonsyndromic myopia in 83 Chinese individuals diagnosed with early-onset high myopia(eo-HM).
Methods: Variants in 18 candidate genes in 83 probands with eo-HM were distinguished by whole-exome sequencing (WES) and assessed by multistep bioinformatics analysis.
Results: Four likely pathogenic variants were detected in 4 of the 83 probands (4.
Exp Eye Res
September 2025
Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu
Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.
View Article and Find Full Text PDFJ Bone Miner Res
September 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
Autosomal Dominant Osteopetrosis (ADO) is a rare, osteosclerotic disorder usually caused by missense variants in the CLCN7 gene, resulting in impaired osteoclastic bone resorption. Penetrance is incomplete and disease severity varies widely, even among relatives within the same family. Although ADO can cause visual loss, osteonecrosis, osteomyelitis, and bone marrow failure, the most common complication of ADO is fracture.
View Article and Find Full Text PDF