98%
921
2 minutes
20
Stretchable electronics have become essential for custom-built electronics, self-assembling robotics, and wearable devices. Although many stretchable electronics contain integrated systems, they still limit bulky connection systems. We introduce a new dual-functioned self-attachable and stretchable interface (SASI), allowing a direct and instant interconnection between rigid and soft electronics. The SASI consists of a sticky and stretchable substrate and surface-embedded serpentine conductors with the single-sided polyimide fabricated using the embedded transfer process. The adhesion property of the SASI is controlled by the mixed elastomer ratio. The resulting sticky and conductive SASI can instantly adhere to a metal surface and create conductive paths. The SASI serpentine conductors exhibit high stretchability (∼290%) and provide self-attachable, re-attachable, and low-resistant electrical contacts (0.85 ohms in 0.25 mm) between interfaces without pressure, heat, or extra solder. In addition, three-dimensional curved and modular electronics can be formed with the SASI by compiling functional blocks. SASI provides a novel strategy for assembling functional chips or modules for stretchable electronics, opening a path to onboard integrated electronics that are customizable by users for real-world stretchable electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13803 | DOI Listing |
Adv Colloid Interface Sci
September 2025
Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China. Electronic address:
Multiple stretchable gels with conductivity have been thoroughly prepared in diverse solvents historically to modulate their superlative properties in a multitude of applications, such as soft robotics, wearable devices, and e-skins. Eutectogels are considered as an emerging class of gels that combine the best features of both hydrogels and organogels, including environmental friendliness, thermal stability and customizable nature. Eutectogels, composed of deep eutectic solvents (DES) immobilized within different matrices, not only inherit the merits of DES, but also show some additional properties derived from the special structure and compositions, which are conducive to development potential.
View Article and Find Full Text PDFSci Adv
September 2025
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States.
Soft conductive composites are significant components of soft and wearable electronics. Existing soft conductive composites encounter difficulties in attaining 10% of copper's electrical conductivity while maintaining high stretchability. In this work, a novel "soft conductive junction" concept is introduced to overcome the conductivity-stretchability trade-off.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, La Jolla, CA, United States. Electronic address:
Nano-electronics based neural implants represent a rapidly advancing interdisciplinary domain at the intersection of bioelectronics, nanotechnology, and neuro-engineering. These implantable systems are engineered to restore, modulate, or augment neural functions by establishing high-fidelity, long-term interfaces with neural tissues. The design of such implants necessitates careful consideration of both materials and structural configurations to ensure biocompatibility, mechanical compliance, electrical functionality, and chronic stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.
View Article and Find Full Text PDF