Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model.

Cogn Neurodyn

School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164 People's Republic of China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurons can exhibit abundant electrical activities due to physical effects of various electrophysiology environments. The electromagnetic induction flows can be triggered by changes in neuron membrane potential, which can be equivalent to a memristor applying on membrane potential. To imitate the electromagnetic induction effects, we propose a three-variable memristor-based Wilson neuron model. Using several kinetic analysis methods, the memristor parameter- and initial condition-related electrical activities are explored intensively. It is revealed that the memristive Wilson neuron model can display rich electrical activities, including the asymmetric coexisting electrical activities and antimonotonicity phenomenon. Finally, using off-the-shelf discrete components, an analog circuit on a hardware level is implemented to verify the numerically simulated coexisting electrical activities. Studying these rich electrical activities in neurons can build the groundwork to widen the neuron-based engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508304PMC
http://dx.doi.org/10.1007/s11571-021-09764-0DOI Listing

Publication Analysis

Top Keywords

electrical activities
24
electromagnetic induction
12
wilson neuron
12
neuron model
12
induction effects
8
memristive wilson
8
membrane potential
8
rich electrical
8
coexisting electrical
8
electrical
7

Similar Publications

The maintenance of extracellular fluid (ECF) osmolality and sodium concentration ([Na]) near optimal "set point" values sustains physiological functions and prevents pathological states such as hypo- and hypernatremia. The peptide hormones vasopressin (antidiuretic hormone) and oxytocin (a natriuretic hormone in rats) play key roles in this process. These hormones are synthesized by hypothalamic magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis and are released into the systemic circulation in response to rises in ECF osmolality or [Na].

View Article and Find Full Text PDF

Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Neural basis of transcutaneous electrical nerve stimulation for neuropathic pain relief.

Neuron

September 2025

Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China. Electronic address:

Existing treatments for chronic pain often prove ineffective and carry adverse side effects, highlighting the need for better analgesics, including non-pharmacological treatments. We demonstrate that transcutaneous electrical nerve stimulation (TENS), when repeatedly applied during the early phase of nerve injury in mice, produces sustained analgesic effects by activating the dorsal column nucleus (DCN)-thalamic-cortical pathway, which transmits vibration, discriminative touch, and proprioception. Mechanistically, TENS selectively activates glutamatergic neurons in the DCN (DCN) via exciting Aβ low-threshold mechanoreceptors (Aβ-LTMRs) in dorsal root ganglia (DRGs).

View Article and Find Full Text PDF