Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a comprehensive study of the effect of the processing by high-pressure torsion (HPT) on the corrosion behavior in Ringer's solution for two popular bioresorbable magnesium alloys-Mg-1Ca and Mg-1Zn-0.2Ca. Three states were studied for each alloy-the initial homogenized state, the as-HPT-processed state and the state after subsequent annealing at 250 and 300 °C. It is shown that HPT processing results in a very strong grain refinement in both alloys down to a mean grain size of about 210 nm for the Mg-1Ca alloy and 90 nm for the Mg-1Zn-0.2Ca alloy, but their corrosion resistance values differ significantly (by an order of magnitude). The conducted precision scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction studies demonstrate that such a difference in the corrosion behavior is conditioned by a difference in the morphology and origin of the nano-sized particles of second phases, as well as by a change in the electrochemical properties of the "particle-α-Mg" pair. The obtained results are discussed from the perspective of the innovative applications of biodegradable Mg alloys for the manufacture of advanced medical implants and products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570597PMC
http://dx.doi.org/10.3390/ma15196749DOI Listing

Publication Analysis

Top Keywords

corrosion behavior
12
electron microscopy
8
microstructure refinement
4
corrosion
4
refinement corrosion
4
behavior bioresorbable
4
bioresorbable mg-1zn-02ca
4
mg-1zn-02ca mg-1ca
4
mg-1ca alloys
4
alloys paper
4

Similar Publications

Compositional "plainification" in biodegradable magnesium-rare earth alloys - Achieving well-balanced performance in an ultra-lean Mg-Pr alloy.

Biomaterials

September 2025

Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China. Electronic address:

Contrary to the traditional strengthening route by adding multiple & high-dosage alloying elements, we here explored extremely compositional and phase-constituent "simplification" in rare earth (RE) containing biodegradable magnesium alloys for better biocompatibility. An ultra-lean Mg-0.1Pr alloy with a multiscale microstructure has been developed through casting and extrusion, which showed well-balanced performances that match the commercial Mg-based orthopedic products.

View Article and Find Full Text PDF

The most significant challenge facing magnesium alloy stents is their ability to withstand complex deformation during their application. To gain a deeper understanding of the impact of stent deformation on the protective capabilities of the coating, this paper presents an amplified stent deformation model. The models were coated with either a low elongation material-Poly(D, L-lactide) (PDLLA) or a high elongation material-Poly(butylene adipate-co-terephthalate) (PBAT), followed by the application of a rapamycin-loaded PLGA as drug-eluting layer.

View Article and Find Full Text PDF

Oxidation and Corrosion Evaluation of β‑NiAl Coatings Deposited onto Pure Nickel and Superalloy Substrates.

ACS Omega

September 2025

Advanced Materials & Sustainable Environment Research Group, Department of Metallurgical Engineering, NED University of Engineering & Technology, Karachi 75270, Sindh, Pakistan.

Thermal barrier coatings (TBCs) play a crucial role in protecting aeroengine turbine blades in high-temperature environments. An essential component in these multilayer systems is the bond coat, which guarantees the adhesion of the ceramic topcoat and superalloys. This study employs a high-activity pack aluminizing method to form a coating.

View Article and Find Full Text PDF

Self-healing polymeric coatings represent a transformative class of smart materials capable of autonomously or stimuli-responsively repairing mechanical or environmental damage, thereby significantly extending the operational lifespan of protected substrates. This review systematically elucidates the underlying mechanisms and chemistries enabling self-healing behavior, encompassing both extrinsic strategies such as microcapsules, microvascular networks, and corrosion inhibitor reservoirs and intrinsic approaches based on dynamic covalent (e.g.

View Article and Find Full Text PDF