Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: No reports examine the relationship between in-utero exposure to gestational diabetes mellitus (GDM), offspring epigenetic age acceleration (EAA), and offspring insulin sensitivity.

Methods: Using data from a cohort study, we examined associations between GDM in-utero exposure and offspring EAA at approximately 10 years of age, using separate regression models adjusting for offspring chronological age and sex. We also examined associations between EAA with updated homeostasis model assessment of insulin sensitivity and secretion (HOMA2-S and HOMA2-β) measured at approximately 10 and 16 years of age, using mixed linear regression models accounting for repeated measures after adjustment for offspring chronological age and sex.

Results: Compared to unexposed offspring (n = 91), offspring exposed to GDM (n = 88) had greater EAA or older extrinsic age compared to chronological age (β-coefficient 2.00, 95% confidence interval [0.71, 3.28], p = 0.0025), but not greater intrinsic EAA (β-coefficient -0.07, 95% CI [-0.71, 0.57], p = 0.93). Extrinsic EAA was associated with lower insulin sensitivity (β-coefficient -0.018, 95% CI [-0.035, -0.002], p = 0.03) and greater insulin secretion (β-coefficient 0.018, 95% CI [0.006, 0.03], p = 0.003), and these associations persisted after further adjustment for measures of maternal and child adiposity. No associations were observed between intrinsic EAA and insulin sensitivity and secretion, before or after adjustment for measures of maternal and child adiposity.

Conclusions: In this study, children exposed to GDM experience greater extrinsic EAA, which is associated with lower insulin sensitivity and greater insulin secretion. Further studies are needed to determine the directionality of these associations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804757PMC
http://dx.doi.org/10.1111/dme.14925DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
16
chronological age
12
gestational diabetes
8
diabetes mellitus
8
age
8
epigenetic age
8
offspring
8
in-utero exposure
8
eaa
8
examined associations
8

Similar Publications

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

Current status of Liraglutide delivery systems for the management of type 2 diabetes mellitus.

Drug Deliv Transl Res

September 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.

Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.

View Article and Find Full Text PDF

Subcutaneous administration of the sphingosine kinase 2 inhibitor ABC294640 has no metabolic benefits in high fat diet-induced obesity in male mice.

Life Sci

September 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:

Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.

View Article and Find Full Text PDF

Processed Meat Health Risks: Pathways and Dietary Solutions.

J Nutr

September 2025

School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia; Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250

Background: Red and processed meat consumption is extensively linked to chronic disease risk in observational studies, with robust meta-analyses demonstrating significant positive associations for colorectal, breast, endometrial, and lung cancers, type 2 diabetes (T2DM), cardiovascular disease (CVD), and all-cause mortality. Dose-response relationships indicate elevated risks even at moderate intakes. Moreover, processed meats consistently show stronger detrimental effects than unprocessed red meats.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF